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Full Waveform Inversion (FWI) is a high-resolution seismic
imaging method and a mature technology in exploration geo-
physics. The typical approach consists in recovering some sub-
surface mechanical properties, referred to as the model m(x),x∈
Rd , by minimizing a least-squares misfit (Virieux et al., 2014)

min
m∈RN

C(m) =
1
2
∥dcal[m]−dobs∥2

L2 , (1)

where N is the dimension of the model space, dobs are ob-
served seismic traces recorded at receivers (typically noisy),
and dcal[m] are calculated traces obtained through a costly nu-
merical resolution of an acoustic or elastodynamics wave equa-
tion. For 3D FWI, the dimension of the model space is very
large, typically millions or billions. Quasi-Newton iterative
methods are commonly used to solve this minimization prob-
lem due to their good trade-off between robustness, conver-
gence speed, and computational cost. Most notably, the ℓ-
BFGS method (Nocedal, 1980) has become the industry stan-
dard for FWI. The update takes the form, at the k-th iteration,

mk+1 = mk − τkQ(mk)∇C(mk), (2)

where the preconditioner Q(mk) is constructed from the previ-
ous ℓ-gradients, and the step size τk is determined via a line-
search strategy. It is well known that the minimization prob-
lem (1) is ill-posed and nonlinear, with a large effective null-
space. As a result, the obtained subsurface property lacks inter-
pretability. The Bayesian approach to inverse problems, pro-
moted in the 80’s by Tarantola and Valette (1982), provides a
probabilistic view on the uncertainty quantification problem,
which has been widely adopted in many fields of applied sci-
ences. The solution to the inverse problem consists in find-
ing the probability distribution of all possible models, once all
known data and prior knowledge have been incorporated. It
is obtained from the Bayes theorem (Kaipio and Somersalo,
2005)

πpost(m) := π(m|dobs) =
π(dobs|m)πprior(m)

π(dobs)
, π(dobs) ̸= 0,

(3)

given a prior model distribution πprior(m), and a likelihood
distribution that is related to the least-squares misfit through
π(dobs|m) ∝ exp(−C(m)) when additive Gaussian noise are
assumed in the observations. Despite progress in computa-
tional seismology, machine learning, and the availability of
computing power, a direct application of the Bayes formula re-
mains intractable, because it involves a high-dimensional inte-
gral over the entire model space. A more reasonable goal is to
find a set of highly probable solutions drawn from the posterior
πpost, a task known in computational statistics as sampling. Ar-
guably one of the oldest sampling strategy is to build a Markov
Chain (MCMC) through the celebrated Metropolis-Hastings
algorithm (Hastings, 1970). In FWI, advanced MCMC strate-
gies such as HMC (Gebraad et al., 2020; Sen and Biswas,

2017), RJMCMC (Bodin and Sambridge, 2009), Stochastic-
Newton MCMC (Martin et al., 2012), or MALA (Izzatullah
et al., 2021) have been employed. Although these methods
can achieve fast mixing rates, they remain challenging to apply
when a single likelihood evaluation involves solving a wave
equation with O(109) degrees of freedom. At the other end
of the spectrum, Gaussian posterior approximations are com-
putationally affordable, and enable a local sensitivity analysis
around the maximum a posteriori (MAP) estimate (Fichtner
and Trampert, 2011; Bui-Thanh et al., 2013). They provide a
useful baseline for uncertainty quantification but fail to capture
non-gaussian posteriors, which are expected in highly non-
linear problems like FWI. In the late 2000’s, machine learn-
ing brought new perspectives to Bayesian inference. A major
shift in perspective was the willingness to trade exact poste-
rior representation for computational efficiency, giving rise to
the field of variational inference (VI). Examples include Gaus-
sian VI (Ranganath et al., 2014) and particle-based methods
such as Stein Variational Gradient Descent (SVGD, Liu and
Wang (2016)), which have both been applied to FWI (Zhang
et al., 2023). These approaches provide scalable uncertainty
estimates at a fraction of the cost of MCMC; nevertheless, it is
still not well understood how accurately they approximate the
posterior distribution. The same applies to normalizing flows
(Siahkoohi et al., 2021; Yin et al., 2024), which learn a map-
ping to transform the prior into the posterior, through the com-
position of simple invertible functions. In parallel, the field
of data assimilation has pursued similar ideas, giving rise to a
class of methods known as Sequential Monte Carlo (SMC) or
particle filters. A notable success in this area is the Ensemble
Kalman Filter or EnKF (Evensen, 2003; Thurin et al., 2019),
which offers a computationally efficient, though approximate,
alternative to particle filters. Inspired by these recent advances
in uncertainty quantification for FWI, we emphasize a general
methodology to better understand the modern computational
Bayesian approaches to sampling, leveraging the theory of gra-
dient flows in the space of probability measures (Santambro-
gio, 2017; Trillos et al., 2023). We then discuss how data as-
similation techniques, such as the EnKF, can help mitigate the
curse of dimensionality on a challenging FWI scenario with
field data, following the work of Hoffmann et al. (2024). We
conclude by outlining perspectives and directions for future re-
search.

MODERN ADVANCES ON SAMPLING USING GRADI-
ENT FLOWS ON PROBABILITIES

The goal of this section is to propose a probabilistic interpreta-
tion of FWI. Recent advances in the theory of optimal transport
(Chewi et al., 2024; Santambrogio, 2015) have brought new in-
sights into Bayesian inference through the framework of gra-
dient flows in the space of probability measures. To relate this
perspective to a deterministic FWI update, we note that the it-
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erative scheme in Eq. (2) is an explicit Euler discretization of
the ODE

dm
dt

=−∇QC(m), m(0) = m0, (4)

as the step size τk → 0, which we refer to as a gradient flow
in the Euclidean space RN . It is driven by the velocity vector
field v=∇QC =Q∇C. We can interpret the FWI minimization
as the choice of three components (Chen et al., 2023):

1. a misfit function;

2. a metric to define the gradient;

3. a suitable numerical integration scheme.

Rather than inverting for a single subsurface property, we give
a probabilistic analogue, by treating the model M = m(x) as a
realization of a random variable M ∼ µ governed by the prob-
ability distribution µ . To facilitate the exposition, we assume
that all probability measures are smooth probability densities.
Instead of minimizing a least-squares misfit, we define a sta-
tistical discrepancy. We choose the Kullback-Leibler (KL) di-
vergence, which measures the relative information between µ

and the posterior distribution π from Eq. (3). The optimization
problem becomes

min
µ∈P

C (µ), C (µ) = KL(µ||πpost) :=
∫

µ log
(

µ

πpost

)
dm,

(5)

which is defined in the space of probability densities P . The
theory of optimal transport allows to endow the space P with
a Riemannian geometry (Otto, 2001), thereby inducing a met-
ric where we can assign an inner product and further define a
gradient. Denoting by M (µ) the (Riemannian) metric tensor,
the gradient flow of the functional C formally evolves a curve
of densities t → µt in artificial time according to

∂ µt

∂ t
=−∇C (µt) =−M (µt)

−1 δC

δ µ

∣∣∣∣
µ=µt

, (6)

where δC
δ µ

denotes the first variation (Fréchet derivative) of C .

Applied to the KL divergence, we find δKL
δ µ

= log µ− logπ+1.
A canonical choice for the metric is the 2-Wasserstein metric
W2, the transport distance that quantifies the minimal mean-
squared displacement needed to move one density into an-
other. Suppose the time-dependent density µt is carried from
any prior πprior towards the posterior πpost by a velocity field
vt . Because probability mass is conserved, the evolution of µt
must satisfy the continuity equation in the weak sense,∫ (

∂ µt

∂ t
+∇ · (µtvt)

)
ϕ = 0, (7)

for any smooth test function ϕ of compact support. Among
all velocity fields satisfying the continuity equation, the one
that realizes the 2-Wasserstein distance minimizes the kinetic
energy, and therefore is a potential field vt = ∇φ . This is the
Benamou and Brenier (2000) dynamic formulation of optimal
transport. It yields the inverse metric operator,

M (µ)−1
φ =−∇(µ∇φ),

acting on a scalar field φ . Plugging the KL first variation into
the gradient flow formula yields the Wasserstein gradient flow,

∂ µt

∂ t
= ∇ ·

(
µt∇ log

(
µt

πpost

))
(8)

which is the evolution equation pioneered by Jordan et al. (1998).
This suggests that, to transform the prior to the posterior, one
may follow the direction of steepest descent of the KL diver-
gence with respect to the W2 metric. Writing the posterior as
πpost(m) ∝ e−C(m), where C(m), previously introduced as the
data misfit, may now include additional regularization terms
accounting for prior information, the corresponding Wasser-
stein gradient flow is equivalently a Fokker-Planck equation

∂ µt

∂ t
= ∆µt +∇ · (µt∇C) .

It reveals that the flow is a combination of: i) a drift term ∇ ·
(µt∇C) that transports the density towards small values of the
misfit C (i.e., the high-probability regions of the posterior), and
ii) a diffusion term ∆µt that spreads the mass out, allowing
the flow to explore the posterior rather than collapsing to a
single point. Under a convexity assumption on the (possibly
regularized) misfit C, it can be shown that the KL divergence
decreases monotonically along the flow, and that the evolving
distribution µt converges to the posterior. This highlights a key
strength of the framework, namely its analogy to convergence
guarantees in convex optimization.

FROM GRADIENT FLOWS TO SAMPLING METHODS

We now relate the previous development to the uncertainty
quantification methods used in FWI.

Markov Chain Monte Carlo and Langevin dynamics
The Fokker-Planck PDE admits the overdamped Langevin stochas-
tic differential equation (SDE) representation

dMt =−∇C(Mt)dt +
√

2dBt , Mt ∼ µt , (9)

where Bt is the standard Brownian motion. If particles fol-
lows this SDE, they will converge in law to πpost as t → ∞.
A straightforward time discretization is the Euler-Maruyama
scheme Mk+1 =Mk−τ∇C(Mk)+

√
2τξk,ξk ∼N (0, I), which

gives the unadjusted Langevin algorithm. Adding a Metropolis-
Hastings correction yields MALA (Roberts and Tweedie, 1996),
and removes the bias introduced by the time step. Precondi-
tioning, using curvature information as in stochastic-Newton
MCMC, or introducing momentum (underdamped Langevin
/ HMC) corresponds respectively to changing the metric or
augmenting the dynamics with auxiliary variables. A precon-
ditioned dynamics such as dMt = −Q∇C(Mt)dt +

√
2QdBt ,

with Q a positive-definite matrix, can substantially accelerate
mixing rates of MCMC. More generally, there is an entire fam-
ily of SDEs whose marginal laws satisfy Fokker-Planck equa-
tions and inherit a gradient-flow structure (Ma et al., 2015).

Lagrangian view and SVGD
While the Langevin dynamics adopt an Eulerian point of view,
the Wasserstein gradient flow admits the Lagrangian particle
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representation with instantaneous velocity

dMt

dt
= vt(Mt) =−∇ log

(
µt

πpost

)
=−∇C−∇ log µt , (10)

This representation is appealing because it describes a deter-
ministic particle motion. However, it cannot be implemented
directly, becuase the density µt is unknown. SVGD addresses
this problem by restricting the admissible velocity fields to re-
producing kernel Hilbert space (RKHS), i.e. a kernelized sub-
space of L2(µt). The velocity field vt is projected onto this
subspace as

v̂t(·) =−
∫

κ(m, ·)∇ log
(

µt(m)

πpost(m)

)
µt(m)dm, (11)

and after integrating by parts simplifies to Eµt (∇κ − κ∇C),
which can be estimated with Monte Carlo samples. The per-
formance of SVGD critically depends on the kernel choice κ

and lacks convergence guarantees in the large particle limit. In
addition, kernel interactions can become ineffective in high-
dimensional settings, leading to variance collapse.

Normalizing flows
Normalizing flows (NF) aim to transform a simple reference
distribution, here the prior, into the target posterior via an in-
vertible map Tθ parameterized by neural networks, such that
πprior = (Tθ )#πpost, where (Tθ )# denotes the push-forward op-
eration. In practice, Tθ is constructed as a composition of mul-
tiple local transformations Tθ = TθK ◦ ... ◦ Tθ1 , each of which
can be interpreted as integrating a velocity field that satisfies
the continuity equation over a discrete time step. From the lens
of Wasserstein gradient flow, NFs learn a finite-dimensional
approximation of the transport map induced by the steepest
descent direction of the KL divergence. The resulting transfor-
mations are not necessarily the optimal maps associated with
the dynamic optimal transport formulation. Recent develop-
ments have introduced normalizing flows in which a neural
network is trained to approximate the implicit time-stepping
of the JKO scheme (Mokrov et al., 2021). This construction
establishes a closer geometric link between NFs and the vari-
ational structure of Bayesian inference, though, to the best of
our knowledge has not yet been applied in the context of FWI.

Gaussian variational inference and EnKF
A natural simplification of the Wasserstein gradient flow is to
restrict the space of admissible densities to a parametric fam-
ily. Assuming a Gaussian family µt ∼ N (mt ,Σt), we can
project the infinite-dimensional gradient flow onto the finite-
dimensional manifold of Gaussian measures (Lambert et al.,
2022). By taking the moments of Eq. (8), one obtains a closed
system of ODEs governing the evolution of the mean and co-
variance:

dmt

dt
=−Eµt [∇C] (12)

dΣt

dt
= 2I −ΣtEµt [∇

2C]−Eµt [∇
2C]Σt , (13)

which differs from the black-box variational inference (BBVI)
where gradients are taken in the Euclidean parameter space
of (mt ,Σt). By selecting a suitable quadrature rule for the
Gaussian expectations and a time discretization scheme, we
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Figure 1: Evolution of a mixture of 5 Gaussians, represented in
colors by their means and covariances, for a toy 2-parameters
FWI problem at initialization (left) and after 64 iterations
(right). The L2-misfit is plot on the background, and shows
a heavy-tailed nullspace, corresponding to models with equal
travel times from the source to the receiver. The “true” model,
c∗ = (2500,4000) m/s, is depicted by the red star.

can compute the best Gaussian approximation to the poste-
rior with respect to the KL divergence. However, note the co-
variance update involves O(N2), which motivates low-rank or
sparse approximations of the covariance. A sparse approxi-
mation was considered in the PSVI method (Zhao and Curtis,
2024), allowing FWI uncertainty quantification in 3D.

The Ensemble Kalman Filter (EnKF) also belongs to this class
of Gaussian-approximation methods. Informally, the EnKF
update can be viewed as a Gauss-Newton preconditioned gra-
dient update for the mean, using the mean point quadrature
rule (Chada et al., 2021)

dmt

dt
=−Eµt [Q∇C]≈ K(dcal[mt ]−dobs), (14)

where K is the Kalman gain. In addition, the covariance is not
updated explicitly; instead, it is estimated empirically from the
ensemble, yielding a low-rank approximation of Σt . Because
the EnKF is not designed as a sampling method, the ensemble
tends to collapse over the iterations. In practice, localization
and inflation techniques are used to counteract collapse and
maintain diversity.

Towards new methods
In summary, many of the sampling methods used in FWI share
a common ground as discretizations of the Wasserstein gradi-
ent flow related to the KL divergence. Thanks to this frame-
work, we can also define new methods. For instance, we can
enrich the Gaussian VI approximation by evolving a Gaussian
mixture fully in parallel, following Lambert et al. (2022), in
order to improve the posterior representation. This is partic-
ularly relevant when the effective nullspace is large, such as
depicted in Fig. 1 on a toy FWI example. Although the frame-
work is attractive, it is not straightforward to apply when the
parameter space is high-dimensional. We show in the next sec-
tion how the EnKF has achieved this on field data (Hoffmann
et al., 2024).

LARGE-SCALE UNCERTAINTY QUANTIFICATION: AN
EXAMPLE ON FIELD DATA

We propose an application of a UQ-FWI workflow on field
data recorded by a 4-components OBC device. A total of 2048
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receivers were deployed on the seabed along twelve cables,
covering a surface of 145 km2. 2048 reciprocal sources, lo-
cated 5 m below the sea surface, are used for the inversion. The
data is restricted to the frequency band 2.5-5 Hz. In this appli-
cation we use only the pressure component and perform the
inversion in the visco-acoustic VTI approximation. We rely on
the finite-difference based full waveform modeling and inver-
sion code TOYxDAC TIME (Yang et al., 2018). We only invert
for Vp and keep the other parameters as passive. The initial
model has been obtained by reflection traveltime tomography.
A source subsampling strategy has been applied into ensemble
of shots in 16 batches.

The initial ensemble of models is designed by perturbing the
initial model with Gaussian statistics, following the strategy
described in Thurin et al. (2019). The initial covariance is cho-
sen such that it matches the expected resolution of the FWI in
the considered frequency band (Wu and Toksöz, 1987). The
initial ensemble needs to be sufficiently rich to prevent col-
lapse, while avoiding cycle-skipping of one of the ensemble
member. This ensures that all models fall into the same lo-
cal minimum valley. The FWI-EnKF scheme performs a dy-
namical application of the Bayes theorem, sequentially for the
16 batches of shots. Each application of the Bayes theorem
consists of a forecast and an analysis step, repeated until all
batches have been assimilated,

1. the forecast step applies a few BFGS iterations to each
particle independently, which gives a new prior πprior.
Here we perform 3 BFGS iterations per batch,

2. the analysis step applies the EnKF update to the fore-
casted ensemble, which gives an intermediate posterior
πpost. This requires the application of Ne forward mod-
eling, where Ne is the ensemble size.

Reflecting on the previous section, we see that the empirical
covariance is updated at each analysis step from the ensemble,
but there is no diffusion term in the forecast nor the analysis
steps to prevent the collapse of the ensemble. A strong advan-
tage of this strategy is that both steps leverage quasi-Newton
optimization. Once the EnKF-FWI strategy is performed, we
can extract Gaussian statistics from the ensemble. Fig. 2
shows the mean and variance of the final ensemble for Vp ob-
tained with three different ensemble sizes, for a cross-section
at x = 2.95 km, as well as the distribution of the ensemble at a
given point. We conclude that an ensemble size of Ne = 50 is
sufficient to capture relevant information about uncertainty.

It remains to analyze the ability of the EnKF-FWI scheme to
estimate the best Gaussian from the posterior with respect to
the KL divergence, which is limited by i) the low-rank rep-
resentation of the covariance, ii) the covariance collapse, and
iii) the mean point quadrature rule. Based on our knowledge
on gradient flows, we are in position to correct the covariance
collapse of the EnKF by restoring a suitable diffusion effect
inspired from the preconditioned Langevin SDE (Chada et al.,
2021), at the cost of additional iterations. An example on a toy
FWI example is shown in Fig. 3.
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Figure 2: (a.i–c.i) Final mean Vp model obtained by EnKF-
FWI, (a.ii–c.ii) final variance, (a.iii–c.iii) distribution of the
models at a given point marked in red. The results are obtained
with three ensemble sizes Ne: (a) Ne = 10, (b) Ne = 50 and (c)
Ne = 200. x = 2.95 km.
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Figure 3: EnKF iterative scheme applied to a toy 2-parameters
FWI problem, after 64 iterations (or analysis steps), with Ne =
32. While the EnKF has collapsed (left), we can correct the
EnKF to ensure a good balance between drift and diffusion
(right). The L2-misfit is plot on the background. The “true”
model, c∗ = (2500,4000) m/s, is depicted by the red star.

OUTLOOKS AND FUTURE RESEARCH DIRECTIONS

Through dimensionality reduction, large-scale uncertainty quan-
tification has recently become feasible for 3D FWI (Hoffmann
et al., 2024; Zhang et al., 2023). Current strategies, however,
still rely on a Gaussian approximation of the posterior. It is
important to note that this Gaussian approximation is obtained
through minimization of the KL divergence, rather than from
a local estimation around the MAP. Future research directions
include, but are not limited to, the following:

• developing sampling algorithms from the gradient flow
perspective, which leverage second-order information
and can move beyond the Gaussian representation,

• designing dimensionality reduction strategies that pre-
serve the accuracy of the posterior representation,

• constructing accurate surrogate models to emulate wave
propagation PDEs, enabling fast likelihood evaluation,

• understanding how sampling methods are affected by
cycle-skipping.

These directions open exciting perspectives for uncertainty quan-
tification in FWI in the years to come.
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