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Full Waveform Inversion (FWI) is a high-resolution seismic
imaging method and a mature technology in exploration geo-
physics. It is inherently a severely ill-posed inverse problem,
typically formulated as the minimization of a least-squares mis-
fit function over the model parameter map m(x),x € R?
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where d,ps are observed seismic traces, and dg,[m] are sim-
ulated traces obtained through the numerical resolution of a
wave equation. Gradient-based methods can tackle this prob-
lem iteratively, but due to the strong nonlinearity and the large
effective null-space of the inverse problem, the recovered model
often lacks interpretability. Considering Bayesian statistical
inversion (Kaipio and Somersalo, 2006) addresses these lim-
itations. By defining the likelihood probability distribution
Te(dops|m) o exp(—C(m)), and a prior model Myior(m), we
can infer on the posterior distribution through the application
of Bayes’ theorem 7(1m|dobs) o< 7t (dobs|m) Torior (). However,
FWTI’s high computational cost, where a single likelihood eval-
uation may involve solving a wave equation with &(10%) de-
grees of freedom in three-dimensions, renders direct sampling
impossible. Inspired by recent FWI studies (Zhang et al., 2023;
Hoffmann et al., 2024), we explore strategies to sample from
the posterior with a limited number of likelihood evaluations
leveraging parallel computing architectures.

TOWARDS MODERN BAYESIAN APPROACHES

Recent advances in computational optimal transport (Chewi
et al., 2024; Santambrogio, 2015) have provided new insights
for Bayesian inference thanks to the theory of gradient flows
in the space of probabilities measures. When the model M =
m(x) is treated as a realization of a random variable, the clas-
sical FWI gradient descent has a probalistic interpretation in
terms of Langevin dynamics for the stochastic process (M; );>0
in artificial time. The law y; ~ M; satisfies a Fokker-Planck
equation, and follows the gradient of the KL divergence be-
tween U, and the posterior in the Wasserstein metric. This
perspective motivates the design of novel Bayesian inference
methods. On one hand, Markov Chain Monte Carlo (MCMC)
such as HMC (Gebraad et al., 2020) and Ensemble Kalman
methods (EnKF) (Thurin et al., 2019) define algorithms that
evolve particle-based representations of (M;);>o. EnKF is par-
ticularly attractive due to its embarrassingly parallel nature,
and can perform inference at a reduced cost compared to stan-
dard MCMC, but introduces bias in the representation of the
posterior. On the other hand, variational inference operates
directly in probability space, requiring the posterior to be ap-
proximated by a family of simpler distributions for tractability.
Common choices include Gaussian families (Kucukelbir et al.,
2017) or empirical measures (Liu and Wang, 2016). Motivated
by these developements, we analyze the strengh and weak-

nesses of some Bayesian methods for a simple FWI bench-
mark, and progressively increase its complexity.

A MOTIVATING EXAMPLE

We consider a one-dimensional FWI problem in the acoustic
approximation. The space-time domain is Q = [0,L] x [0,T],
with L =3 km and T = 3 sec. The model m(x) to be inferred
describes the speed of the P-wave, and is a 2-layered medium
m(x) = (c1,c2), split at x = 1.5 km. The wave equation is
discretized with a 2nd-order finite-difference explicit scheme
with absorbing boundary conditions at x =0 and x = L. A
ricker source wavelet centered at fo =5 Hz is set at z = 10m.
Three receivers located at x, = {1.5,2,2.5} km are used to
record the transmitted wave only. The countours of the cost
function are shown in Fig. 1 for a reference set at m*(x) =
(2500,4000) m/s. For the inference, we use a uniform prior
distribution with cppin, = 1000 m/s and ¢ypax = 6000 m/s.

We run a MCMC that uses the Langevin dynamics as a pro-
posal distribution (MALA, Roberts and Tweedie (1996)). Fig.
1 shows the last samples of the chain. As a comparison, we
superpose samples of a vanilla Ensemble Kalman Inversion
(EKI, Iglesias et al. (2013)) with 30 ensemble members after
10 iterations. As expected, EKI is cheap but underestimates
uncertainties. For both methods, the quality of the sampling
is strongly influenced by the initial model. We pursue further
investigations on a n-layered medium, and identify desirable
sampling properties based on large-scale FWI requirements
and the theory of gradient flows. We play on the ill-posedness
of the inversion, and slowly move to more complex situations
in two-dimensions.
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Figure 1: Countours of the normalized FWI misfit function,
and samples of a converged MALA chain and EKI.



