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Aeroacoustics in the transport industry

Aeroacoustics studies the generation and propagation of sound in moving fluids

A simple model : sound propagation in a mean flow → convected propagation

Time-harmonic convected wave operator [Pierce 1990, Spieser, Bailly 2020 ]

P = −ρ0Dv0

(
1

ρ02c02
Dv0

)
+∇ ·

(
1

ρ0
∇
)
, Dv0 = iω + v 0 · ∇

Mathematical properties

• Helmholtz-type operator with varying c0(x), ρ0(x) and mean flow v 0(x)
• P is scalar and self-adjoint,

• If c0(x) = ρ0(x) = 1 ⇒ convected Helmholtz, v 0(x) = 0 ⇒ Helmholtz
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The physics of convected wave propagation

Plane-wave dispersion analysis : u(x) = e−ık·x , k = (kx , ky )
T

Convected Helmholtz operator P = −(ıω + v 0 · ∇)2 +∆, s.t. Pu = 0

Convected Helmholtz P

(ω − v 0 · k)2 − |k |2 = 0

−4 −2 2 4

−4

−2

2

4

v0

vp

vg

kx/ω

ky/ω

v 0 = 0.8× (cos(π/4), sin(π/4))T

−→
Lorentz
transform

Helmholtz Ĥ

|k |2 − ω̂2 = 0

−4 −2 2 4

−4

−2

2

4

kx/ω

ky/ω

ω̂ = ω/
√

1− |v 0|2/c20

• Group velocity is driven by the flow : v g = v 0 + c0k/|k |

• The Lorentz transform maps P to Ĥ [Taylor 1978, Hu et al. 19, Barucq et al. 22 ]
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Numerical challenges for convected propagation

The mean flow impacts
wave propagation

⇒ we must adapt

numerical methods

v 0
k θ

Green kernel, M = |v 0|/c0 = 0.8

A priori p-FEM order
adaptation [Bériot, Gabard 19 ]

Numerical challenges

• Discretization: dispersion error is affected [Bériot et al. 12, Ainsworth 2004 ]

Ed = 1−M cos(θ)
2

[
p!

(2p)!

]2
1

2p+1
(ωh)2p+1

(1+M cos(θ))2p+1 +O(ωh)2p+3, ωh → 0

→ high-order is advocated: choose d∗
λ = 2πp

ωh
(1−M) ≈ 6

• Domain truncation: phase and group velocity have different directions

→ high-frequency solver : use domain truncation to build preconditioner for
iterative methods
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Microlocal factorization

[Engquist, Majda 1977 ] construction : cancel bi-characteristics on the boundary

1. Split convected wave operator P into
bi-characteristics [Nirenberg 1973 ]

P =
(
∂x + ıΛ−) (∂x + ıΛ+)+R

The operators Λ± map the
Dirichlet-to-Neumann data on Σ

2. canceling one of the factors on Σ gives a
non-reflecting boundary condition

Half-space setting

u

xn

τ
(y , ξ)

Σ

→ Identify with the PDE operator to obtain a Ricatti equation for Λ+

(
1−Mx

2
) [(

Λ+)2 + ıOp
{
∂xλ

+}]+ ı(A1 +A0)Λ
+ = B2 + B1, Mx = vx/c0

Λ+ = Op(λ+) is a ψDO associated to the symbol λ+

Use a “high-frequency” asymptotic expansion λ+ ∼ λ+
1 + λ+

0 + · · · , and
compute each λ+

−j with homogeneity degree (ω, ξ)−j
[Hörmander 2007 ]
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DtN symbol expansion for a Helmholtz problem

Symbol calculation with v 0 = 0, ρ0 = 1, c−2
0 (x) = ax + b, ω = 30

Analytic symbol available λ+ = −ie−
2iπ
3

(
aω2

)1/3 Ai′(z)
Ai(z)

, z = e−
2iπ
3

ξ2−ω2(ax+b)

(aω2)2/3

0 20 40 60 80 100 120 140 160
10−7

10−4

10−1

102

ξ

∣∣∣λ+ −∑M−2
j=−1 λ

+
−j

∣∣∣

M = 1

M = 2

M = 3

• λ+
1 =

√
ω2c−2

0 (x)− ξ2 is the “usual” square-root

• λ+
0 depends on ∂x(c

−2
0 ), matches the Airy function asymptotic expansion

• λ+
−1 depends on ∂2

x (c
−2
0 ) and [∂x(c

−2
0 )]2, etc.
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Principal symbol for convected propagation

Principal symbol for the half-space problem

λ+
1 = 1

1−Mx
2

[
−Mx(k0 − Mτ · ξ) +

√
(k0 − Mτ · ξ)2 − (1−Mx

2)|ξ|2
]

with k0 = ω/c0, Mτ = v 0 · τ . λ+
1 depends on local flow properties

• λ+
1 matches the dispersion relation of a plane wave in a uniform flow

• For ω → +∞, we recover the “Sommerfeld” condition λ+
1 = k0/(1 +Mx)

We do the DtN approximation Λ+ ≈ Op
(
λ+
1

)
, and neglect λ+

0 , λ
+
−1, etc.

→ flow variations and curvature effects are in the next symbols

A choice of operator representation

Op
(
λ+
1

)
= 1

1−M2
x

[
−Mx (k0 − ıMτ · ∇Γ) +

√
(k0 − ıMτ · ∇Γ)

2 + (1−M2
x )∆Γ

]
For the half-space problem with uniform mean flow, we have Λ+ = Op(λ+

1 )

How to approximate Op(λ+
1 ) by a local operator ?
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Operator approximations

Op
(
λ+
1

)
has a non-local term f (Z) =

√
1 + Z , with Z → 0 at high frequency

We can use a Taylor/Padé expansion ⇒ sparse discretization

• propagating modes live in I = (−1,+∞)

• evanescent modes live in I = (−∞,−1)

}
branch-cut problem

−4 −2 0 2

−2

0

2

<(Z)

=(
Z
)

α = 0

−4 −2 0 2

−2

0

2

<(Z)

α = −π/4

−4 −2 0 2

−2

0

2

<(Z)

α = −π/2

f (Z) with different branch-cut rotations

−10 −5 0 5
10−8

10−3

102

x

|f
−

f
{T

,P
}N

,α
|

α = 0

−10 −5 0 5

x

α = −π/4

−10 −5 0 5

x

α = −π/2

T1

P4

P8

approximations of f (Z) along the real line

• computational cost
increase with Padé order

• uniform rational
approximation ?
→ Zolotarev solution
[Druskin et al. 2016 ]
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We can use a Taylor/Padé expansion ⇒ sparse discretization

• propagating modes live in I = (−1,+∞)

• evanescent modes live in I = (−∞,−1)

}
branch-cut problem

−4 −2 0 2

−2

0

2

<(Z)

=(
Z
)

α = 0

−4 −2 0 2

−2

0

2

<(Z)

α = −π/4

−4 −2 0 2

−2

0

2

<(Z)

α = −π/2

f (Z) with different branch-cut rotations

−10 −5 0 5
10−8

10−3

102

x

|f
−

f
{T

,P
}N

,α
|

α = 0

−10 −5 0 5

x

α = −π/4

−10 −5 0 5

x

α = −π/2

T1

P4

P8

approximations of f (Z) along the real line

• computational cost
increase with Padé order
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Exterior domain truncation - ABC

Our boundary condition reads ∂nu = −ıOp(λ+
1 )u

→ implementation in a Galerkin formulation with p-FEM

Example: absorbing boundary condition for convex boundary shape

(a) ℜ(u), M= 0.95, ω = 6π

0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

M

E L
2
(%

)

Taylor-0

Taylor-1

Padé-4

(b) Relative domain L2-errors (in %)

• Microlocal construction allows to design high-order ABCs

• including the correction term λ+
0 requires technical effort
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Non-overlapping Schwarz method

Semi-open waveguide configuration, propagation along the x-direction

∂nu = 0 Γ2

Γ1
∂nu = φ

Γ∞
(NRBC)

0

H

L x

y

Ω0, u0

Σ01, g01

Ω1, u1

Σ12, g12

Ω2, u2

Σ23, g23

Ω3, u3

The source φ is a superposition of 30 modes

Schwarz substructured formulation [Gander et al. 2002 ]

Iterative solver for interface problem (I− ΠS)g = φ on Σ
At each (n) iteration

1. Given g
(n)
ij , compute u

(n+1)
i in Ωi with direct solver (∂ni ui + ıSiui = gij),

2. Update the interface unknowns on Σij

g
(n+1)
ji = −g

(n)
ij + ı (Si + Sj) u

(n+1)
i

If (Si ,Sj) ≈ outgoing DtN map Λ+ → convergence in Ndom iterations
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Convergence factor for convected propagation

Suppose a mean flow only along x-direction (vy = 0)
We have complex advection: outgoing and incoming waves have a phase shift

ρ(ξ) =

∣∣∣∣ (f − fn,α)(−2Mxω + f − fn,α)

(−2Mxω + f + fn,α)(f + fn,α)

∣∣∣∣ , Mx = vx/c0

f =
√

1 + (1−M2
x )(ξ/ω)2, fn,α : square-root approx., ξ : Fourier variable

0 20 40 60 80 100120140160
10−4

10−3

10−2

10−1

100

ξ

ρ

Mx = 0.8

0 20 40 60 80 100120140160
10−4

10−3

10−2

10−1

100

ξ

Mx = −0.8

Taylor 0

Taylor 1

Pade 4

Pade 8

Convergence factor: α = −π/2, ω = 30. For Mx = 0.8, ξ ∈ [30, 50], modes have
negative phase velocity

How is numerical convergence affected ?
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Assessment with ABC transmission operators

Absorbing boundary conditions as transmission operator, with α = −π/2
The source is the superposition of the 30 first modes

Real part (+PML) Mx = 0.8, ω = 30 Real part (+PML) Mx = −0.8, ω = 30

Mx = 0.8, ω = 30

Ndom T0 T1 P8
2 20 (dnc) 18 (dnc) 3 (3)
4 60 (dnc) 58 (dnc) 9 (9)
8 142 (dnc) 133 (dnc) 19 (21)

Mx = −0.8, ω = 30

Ndom T0 T1 P8
2 14 (47) 10 (25) 3 (3)
4 44 (dnc) 28 (47) 7 (9)
8 94 (dnc) 62 (dnc) 13 (21)

Number of iterations to rI = 10−6: GMRES vs (Jacobi) solver. T: Taylor, P: Padé

• inverse upstream modes significantly deteriorates convergence

• Padé approximations reach high accuracy after Ndom iterations
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Assessment with PML transmission operators

Let us use a PML for (Si ,Sj), as
approximations of Λ+

Warning: “classic” PML is unstable for

inverse upstream modes (Mx > 0)

[Marchner et al. 2021 ]

0 10 20 30 40 50 60 70
10−6

10−3

100

Iterations

In
te
rf
a
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re
si
d
u
a
l

Mx = 0.8

Classic PML

Lorentz PML

0 10 20 30 40 50 60 70
10−6

10−3

100

Iterations

Mx = −0.8

Npml = 1

Npml = 2

Npml = 4

GMRES iterations, Ndom = 4, ω = 40

• With a Jacobi solver, a “classic” PML as transmission operator does not
converge, even when Mx < 0 !

→ Caution is needed with PML-transmission conditions [Galkowski et al. 2024 ]
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Large scale Schwarz domain decomposition

• For realistic problems we use 2nd order transmission condition

Turbofan engine jet noise benchmark at ω/2π = 40 kHz [Marchner et al. 2025 ]

(a) ℜ(u)

(b) partitioning (METIS)

(c) Zoom

Run on Lumi on 65k cores: Ndom = 4096, 1.3× 109 unknowns, 96× 109 nnz

Peak memory over MPIs: 18.4 Gb, Its : 555 (rI < 10−4), solving time: 15min
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Outline

1. Time-harmonic problems with convection

2. Domain truncation for exterior problems

3. Schwarz domain decomposition for convected propagation

4. Conclusion
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Conclusion

I have presented domain decomposition and domain truncation
techniques for convected propagation

• ABCs and PMLs can be extended to convected propagation, with high
Mach numbers and convex boundary shape

• The Lorentz transform helps to better understand convected propagation

• Rational approx. of DtN maps are of strong interest for many PDEs

• Deriving corner conditions is currently an open problem

All implementations were performed with GmshDDM and GmshFEM [Royer et al. 2021 ]

Thank you !

philippe.marchner@univ-grenoble-alpes.fr
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