Schwarz domain decomposition and domain truncation for exterior time-harmonic problems with variable coefficients and convective flows

Philippe Marchner

Université Grenoble Alpes philippe.marchner@univ-grenoble-alpes.fr

June 23, 2025

29th International Conference on Domain Decomposition Methods

Joint work: X. Antoine (U. Lorraine), C. Geuzaine (U. Liège), H. Bériot (Siemens)

Outline

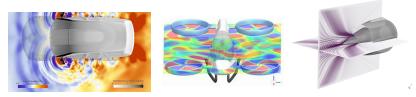
- 1. Time-harmonic problems with convection
- 2. Domain truncation for exterior problems
- 3. Schwarz domain decomposition for convected propagation
- 4. Conclusion

Outline

- 1. Time-harmonic problems with convection
- 2. Domain truncation for exterior problems
- 3. Schwarz domain decomposition for convected propagation

Conclusion

Aeroacoustics in the transport industry

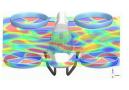


Aeroacoustics studies the generation and propagation of sound in moving fluids

A simple model : sound propagation in a mean flow → convected propagation

DD29 International Conference

Aeroacoustics in the transport industry



4 / 20

Aeroacoustics studies the generation and propagation of sound in moving fluids

A simple model : sound propagation in a mean flow \rightarrow convected propagation

Time-harmonic convected wave operator [Pierce 1990, Spieser, Bailly 2020]

$$\mathcal{P} = -
ho_0 \mathrm{D}_{oldsymbol{v}_0} \left(rac{1}{
ho_0^2 c_0^2} \mathrm{D}_{oldsymbol{v}_0}
ight) +
abla \cdot \left(rac{1}{
ho_0}
abla
ight), \quad \mathrm{D}_{oldsymbol{v}_0} = \mathrm{i} oldsymbol{\omega} + oldsymbol{v}_0 \cdot
abla$$

Mathematical properties

- Helmholtz-type operator with varying $c_0(x)$, $\rho_0(x)$ and mean flow $\mathbf{v}_0(x)$
- ullet $\mathcal P$ is scalar and self-adjoint,
- If $c_0(x) = \rho_0(x) = 1 \Rightarrow$ convected Helmholtz, $v_0(x) = 0 \Rightarrow$ Helmholtz

The physics of convected wave propagation

Plane-wave dispersion analysis : $u(\mathbf{x}) = e^{-\imath \mathbf{k} \cdot \mathbf{x}}$, $\mathbf{k} = (k_x, k_y)^T$ Convected Helmholtz operator $\mathcal{P} = -(\imath \omega + \mathbf{v}_0 \cdot \nabla)^2 + \Delta$, s.t. $\mathcal{P}u = 0$

Convected Helmholtz ${\mathcal P}$

$$(\omega - \mathbf{v_0} \cdot \mathbf{k})^2 - |\mathbf{k}|^2 = 0$$



$$\mathbf{v}_0 = 0.8 \times (\cos(\pi/4), \sin(\pi/4))^T$$

• Group velocity is driven by the flow : $\mathbf{v}_g = \mathbf{v}_0 + c_0 \mathbf{k}/|\mathbf{k}|$

The physics of convected wave propagation

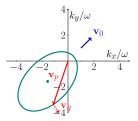
Plane-wave dispersion analysis : $u(x) = e^{-ik \cdot x}$, $k = (k_x, k_y)^T$ Convected Helmholtz operator $\mathcal{P} = -(i\omega + \mathbf{v}_0 \cdot \nabla)^2 + \Delta$, s.t. $\mathcal{P}u = 0$

Convected Helmholtz \mathcal{P}

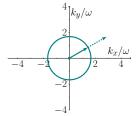
Helmholtz $\hat{\mathcal{H}}$

$$(\omega - \mathbf{v}_0 \cdot \mathbf{k})^2 - |\mathbf{k}|^2 = 0$$

$$|\mathbf{k}|^2 - \hat{\omega}^2 = 0$$



→ Lorentz transform



$$\mathbf{v}_0 = 0.8 \times (\cos(\pi/4), \sin(\pi/4))^T$$

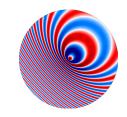
$$\hat{\omega} = \omega / \sqrt{1 - |\mathbf{v}_0|^2 / c_0^2}$$

- Group velocity is driven by the flow : $\mathbf{v}_g = \mathbf{v}_0 + c_0 \mathbf{k}/|\mathbf{k}|$
- The Lorentz transform maps ${\cal P}$ to $\hat{{\cal H}}$ [Taylor 1978, Hu et al. 19, Barucq et al. 22]

Numerical challenges for convected propagation

The mean flow impacts wave propagation

⇒ we must adapt numerical methods

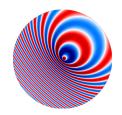


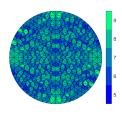
Green kernel,
$$M = |\mathbf{v}_0|/c_0 = 0.8$$

Numerical challenges for convected propagation

The mean flow impacts wave propagation

⇒ we must adapt numerical methods





Green kernel,
$$M=|\mathbf{v}_0|/c_0=0.8~$$
 A priori p-FEM order

A priori p-FEM order adaptation [Bériot, Gabard 19]

Numerical challenges

• Discretization: dispersion error is affected [Bériot et al. 12, Ainsworth 2004]

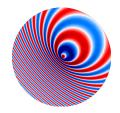
$$E_{d} = \frac{1 - M\cos(\theta)}{2} \left[\frac{\rho!}{(2p)!} \right]^{2} \frac{1}{2p+1} \frac{(\omega h)^{2p+1}}{(1 + M\cos(\theta))^{2p+1}} + \mathcal{O}(\omega h)^{2p+3}, \ \omega h \to 0$$

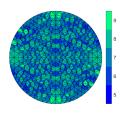
ightarrow high-order is advocated: choose $d_{\lambda}^*=rac{2\pi p}{\omega h}(1-M)pprox 6$

Numerical challenges for convected propagation

The mean flow impacts wave propagation

⇒ we must adapt numerical methods





Green kernel,
$$M=|{f v}_0|/c_0=0.8~$$
 A priori p-FEM order

adaptation [Bériot, Gabard 19]

Numerical challenges

• Discretization: dispersion error is affected [Bériot et al. 12, Ainsworth 2004]

$$E_{d} = \frac{1 - M\cos(\theta)}{2} \left[\frac{\rho!}{(2\rho)!} \right]^{2} \frac{1}{2\rho+1} \frac{(\omega h)^{2\rho+1}}{(1 + M\cos(\theta))^{2\rho+1}} + \mathcal{O}(\omega h)^{2\rho+3}, \ \omega h \to 0$$

- ightarrow high-order is advocated: choose $d_{\lambda}^* = \frac{2\pi p}{\omega h}(1-M) \approx 6$
- Domain truncation: phase and group velocity have different directions
- \rightarrow high-frequency solver : use **domain truncation** to build preconditioner for iterative methods

Outline

- 1. Time-harmonic problems with convection
- 2. Domain truncation for exterior problems

- 3. Schwarz domain decomposition for convected propagation
- Conclusion

Microlocal factorization

[Engquist, Majda 1977] construction: cancel bi-characteristics on the boundary

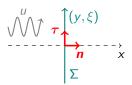
1. Split convected wave operator \mathcal{P} into bi-characteristics [Nirenberg 1973]

$$\mathcal{P} = \left(\partial_x + \imath \Lambda^-\right) \left(\partial_x + \imath \Lambda^+\right) + \mathcal{R}$$

The operators Λ^{\pm} map the Dirichlet-to-Neumann data on Σ

2. canceling one of the factors on Σ gives a non-reflecting boundary condition

Half-space setting



Microlocal factorization

[Engquist, Majda 1977] construction: cancel bi-characteristics on the boundary

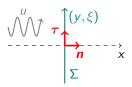
 Split convected wave operator P into bi-characteristics [Nirenberg 1973]

$$\mathcal{P} = \left(\partial_x + \imath \Lambda^-\right) \left(\partial_x + \imath \Lambda^+\right) + \mathcal{R}$$

The operators Λ^\pm map the Dirichlet-to-Neumann data on Σ

2. canceling one of the factors on Σ gives a non-reflecting boundary condition

Half-space setting



 \rightarrow Identify with the PDE operator to obtain a Ricatti equation for Λ^+

$$\left(1-{M_x}^2\right)\left[\left(\Lambda^+\right)^2+\imath \mathrm{Op}\left\{\partial_x\lambda^+\right\}\right]+\imath(\mathcal{A}_1+\mathcal{A}_0)\Lambda^+=\mathcal{B}_2+\mathcal{B}_1,\ M_x=v_x/c_0$$

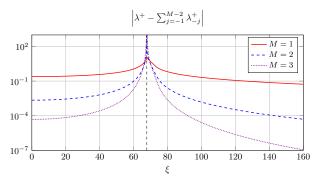
 $\Lambda^+ = \mathsf{Op}(\lambda^+)$ is a $\psi\mathsf{DO}$ associated to the symbol λ^+

Use a "high-frequency" asymptotic expansion $\lambda^+ \sim \lambda_1^+ + \lambda_0^+ + \cdots$, and compute each λ_{-j}^+ with homogeneity degree $(\omega, \xi)^{-j}$ [Hörmander 2007]

DtN symbol expansion for a Helmholtz problem

Symbol calculation with $\mathbf{v}_0 = \mathbf{0}, \rho_0 = 1, c_0^{-2}(x) = ax + b, \ \omega = 30$

$$\mbox{Analytic symbol available } \lambda^+ = -i e^{-\frac{2i\pi}{3}} \left(a \omega^2 \right)^{1/3} \frac{\mathrm{Ai}'(\mathbf{z})}{\mathrm{Ai}(\mathbf{z})}, \quad z = e^{-\frac{2i\pi}{3}} \frac{\xi^2 - \omega^2 (\mathbf{a} \mathbf{x} + \mathbf{b})}{\left(a \omega^2 \right)^{2/3}}$$



- $\lambda_1^+ = \sqrt{\omega^2 c_0^{-2}(x) \xi^2}$ is the "usual" square-root
- λ_0^+ depends on $\partial_x(c_0^{-2})$, matches the Airy function asymptotic expansion
- λ_{-1}^+ depends on $\partial_x^2(c_0^{-2})$ and $[\partial_x(c_0^{-2})]^2$, etc.

Principal symbol for convected propagation

Principal symbol for the half-space problem

$$\lambda_1^+ = rac{1}{1-M_{ exttt{X}}^2} \left[-M_{ exttt{X}}(extbf{k}_0 - extbf{M}_{ au} \cdot extbf{\xi}) + \sqrt{(extbf{k}_0 - extbf{M}_{ au} \cdot extbf{\xi})^2 - (1 - extbf{M}_{ exttt{X}}^2) | extbf{\xi}|^2}
ight]$$

with $k_0 = \omega/c_0$, $\boldsymbol{M_{\tau}} = \boldsymbol{v}_0 \cdot \boldsymbol{\tau}$. λ_1^+ depends on local flow properties

- ullet λ_1^+ matches the dispersion relation of a plane wave in a uniform flow
- For $\omega \to +\infty$, we recover the "Sommerfeld" condition $\lambda_1^+ = k_0/(1+M_x)$

Principal symbol for convected propagation

Principal symbol for the half-space problem

$$\lambda_1^+ = rac{1}{1-M_{ imes}^2} \left[- extbf{M}_{ imes} (extbf{k}_0 - extbf{M}_{oldsymbol{ au}} \cdot oldsymbol{\xi}) + \sqrt{(extbf{k}_0 - extbf{M}_{oldsymbol{ au}} \cdot oldsymbol{\xi})^2 - (1 - extbf{M}_{ imes}^2) |oldsymbol{\xi}|^2}
ight]$$

with $k_0 = \omega/c_0$, $\boldsymbol{M_{\tau}} = \boldsymbol{v}_0 \cdot \boldsymbol{\tau}$. λ_1^+ depends on local flow properties

- λ_1^+ matches the dispersion relation of a plane wave in a uniform flow
- For $\omega \to +\infty$, we recover the "Sommerfeld" condition $\lambda_1^+ = k_0/(1+M_x)$

We do the DtN approximation $\Lambda^+ \approx \operatorname{Op}\left(\lambda_1^+\right)$, and neglect λ_0^+ , λ_{-1}^+ , etc. \to flow variations and curvature effects are in the next symbols

A choice of operator representation

$$\mathsf{Op}\left(\lambda_{1}^{+}\right) = \frac{1}{1-\mathsf{M}_{x}^{2}}\left[-\mathsf{M}_{x}\left(\mathsf{k}_{0} - \imath \mathsf{M}_{\boldsymbol{\tau}} \cdot \nabla_{\Gamma}\right) + \sqrt{\left(\mathsf{k}_{0} - \imath \mathsf{M}_{\boldsymbol{\tau}} \cdot \nabla_{\Gamma}\right)^{2} + \left(1 - \mathsf{M}_{x}^{2}\right)\Delta_{\Gamma}}\right]$$

For the half-space problem with uniform mean flow, we have $\Lambda^+ = \operatorname{Op}(\lambda_1^+)$

Principal symbol for convected propagation

Principal symbol for the half-space problem

$$\lambda_1^+ = rac{1}{1-M_{ imes}^2} \left[- extbf{M}_{ imes} (extbf{k}_0 - extbf{M}_{oldsymbol{ au}} \cdot oldsymbol{\xi}) + \sqrt{(extbf{k}_0 - extbf{M}_{oldsymbol{ au}} \cdot oldsymbol{\xi})^2 - (1 - extbf{M}_{ imes}^2) |oldsymbol{\xi}|^2}
ight]$$

with $k_0 = \omega/c_0$, $\boldsymbol{M_{\tau}} = \boldsymbol{v_0} \cdot \boldsymbol{\tau}$. λ_1^+ depends on local flow properties

- λ_1^+ matches the dispersion relation of a plane wave in a uniform flow
- For $\omega \to +\infty$, we recover the "Sommerfeld" condition $\lambda_1^+ = k_0/(1+M_x)$

We do the DtN approximation $\Lambda^+ \approx \operatorname{Op}\left(\lambda_1^+\right)$, and neglect λ_0^+ , λ_{-1}^+ , etc. \to flow variations and curvature effects are in the next symbols

A choice of operator representation

$$\mathsf{Op}\left(\lambda_{1}^{+}\right) = \frac{1}{1-\mathsf{M}_{x}^{2}}\left[-\mathsf{M}_{x}\left(\mathsf{k}_{0} - \imath \mathsf{M}_{\boldsymbol{\tau}} \cdot \nabla_{\Gamma}\right) + \sqrt{\left(\mathsf{k}_{0} - \imath \mathsf{M}_{\boldsymbol{\tau}} \cdot \nabla_{\Gamma}\right)^{2} + \left(1 - \mathsf{M}_{x}^{2}\right)\Delta_{\Gamma}}\right]$$

For the half-space problem with uniform mean flow, we have $\Lambda^+ = \operatorname{Op}(\lambda_1^+)$

How to approximate $Op(\lambda_1^+)$ by a local operator ?

Operator approximations

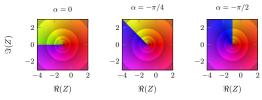
Op (λ_1^+) has a non-local term $f(Z) = \sqrt{1+Z}$, with $Z \to 0$ at high frequency We can use a Taylor/Padé expansion ⇒ sparse discretization

- propagating modes live in $I=(-1,+\infty)$ evanescent modes live in $I=(-\infty,-1)$ branch-cut problem

Operator approximations

Op (λ_1^+) has a non-local term $f(Z) = \sqrt{1+Z}$, with $Z \to 0$ at high frequency We can use a Taylor/Padé expansion ⇒ sparse discretization

- propagating modes live in $I=(-1,+\infty)$ evanescent modes live in $I=(-\infty,-1)$ branch-cut problem

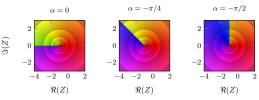


f(Z) with different branch-cut rotations

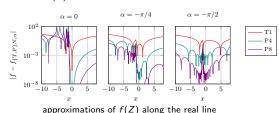
Operator approximations

Op (λ_1^+) has a non-local term $f(Z) = \sqrt{1+Z}$, with $Z \to 0$ at high frequency We can use a Taylor/Padé expansion ⇒ sparse discretization

- propagating modes live in $I=(-1,+\infty)$ evanescent modes live in $I=(-\infty,-1)$ branch-cut problem



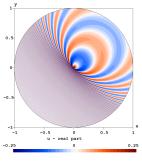
f(Z) with different branch-cut rotations



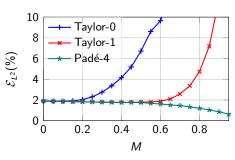
- computational cost increase with Padé order
- uniform rational approximation? → Zolotarev solution [Druskin et al. 2016]

Exterior domain truncation - ABC

Our boundary condition reads $\partial_n u = -\imath \operatorname{Op}(\lambda_1^+) u$ \rightarrow implementation in a Galerkin formulation with *p*-FEM Example: absorbing boundary condition for convex boundary shape



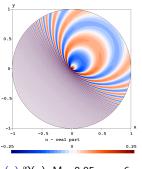
(a) $\Re(u)$, M= 0.95, $\omega = 6\pi$



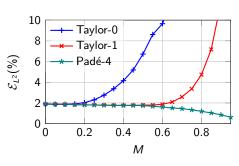
(b) Relative domain L^2 -errors (in %)

Exterior domain truncation - ABC

Our boundary condition reads $\partial_n u = -i \operatorname{Op}(\lambda_1^+) u$ \rightarrow implementation in a Galerkin formulation with *p*-FEM Example: absorbing boundary condition for convex boundary shape



(a) $\Re(u)$, M= 0.95, $\omega = 6\pi$



- (b) Relative domain L²-errors (in %)
- Microlocal construction allows to design high-order ABCs
- including the correction term λ_0^+ requires technical effort

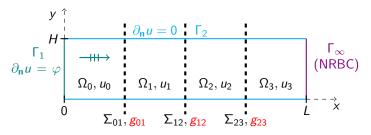
Outline

- 1. Time-harmonic problems with convection
- 2. Domain truncation for exterior problems
- 3. Schwarz domain decomposition for convected propagation

Conclusion

Non-overlapping Schwarz method

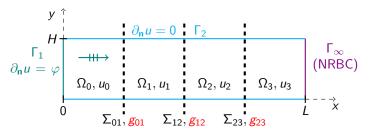
Semi-open waveguide configuration, propagation along the x-direction



The source φ is a superposition of 30 modes

Non-overlapping Schwarz method

Semi-open waveguide configuration, propagation along the x-direction



The source φ is a superposition of 30 modes

Schwarz substructured formulation [Gander et al. 2002]

Iterative solver for interface problem $(\mathbb{I} - \Pi \mathbb{S})\mathbf{g} = \varphi$ on Σ At each (n) iteration

- 1. Given $g_{ij}^{(n)}$, compute $u_i^{(n+1)}$ in Ω_i with direct solver $(\partial_{n_i}u_i + i\mathcal{S}_iu_i = g_{ij})$,
- 2. Update the interface unknowns on Σ_{ij} $\mathbf{g}_{ii}^{(n+1)} = -\mathbf{g}_{ii}^{(n)} + i \left(S_i + S_i \right) \mathbf{u}_i^{(n+1)}$

If $(S_i, S_j) \approx$ outgoing DtN map $\Lambda^+ \rightarrow$ convergence in $N_{ ext{dom}}$ iterations

Convergence factor for convected propagation

Suppose a mean flow only along x-direction ($v_y = 0$) We have **complex advection**: outgoing and incoming waves have a phase shift

$$\rho(\xi) = \left| \frac{(f - f_{n,\alpha})(-2M_{\mathsf{x}}\omega + f - f_{n,\alpha})}{(-2M_{\mathsf{x}}\omega + f + f_{n,\alpha})(f + f_{n,\alpha})} \right|, \ M_{\mathsf{x}} = v_{\mathsf{x}}/c_0$$

$$f = \sqrt{1 + (1 - M_x^2)(\xi/\omega)^2}$$
, $f_{n,\alpha}$: square-root approx., ξ : Fourier variable

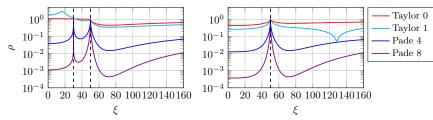
Convergence factor for convected propagation

Suppose a mean flow only along x-direction ($v_y = 0$)

We have complex advection: outgoing and incoming waves have a phase shift

$$\rho(\xi) = \left| \frac{(f - f_{n,\alpha})(-2M_x\omega + f - f_{n,\alpha})}{(-2M_x\omega + f + f_{n,\alpha})(f + f_{n,\alpha})} \right|, \ M_x = v_x/c_0$$

$$f=\sqrt{1+(1-M_x^2)(\xi/\omega)^2}, \; f_{n,\alpha}:$$
 square-root approx., $\xi:$ Fourier variable $M_x=0.8$ $M_x=-0.8$



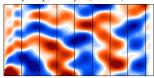
Convergence factor: $\alpha=-\pi/2, \omega=30.$ For $M_x=0.8, \, \xi\in[30,50]$, modes have negative phase velocity

How is numerical convergence affected ?

Assessment with ABC transmission operators

Absorbing boundary conditions as transmission operator, with $\alpha = -\pi/2$ The source is the superposition of the 30 first modes

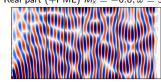
Real part (+PML) $M_x = 0.8, \omega = 30$



$$M_{\rm v} = 0.8, \omega = 30$$

$N_{\rm dom}$	T0	T1	P8
2	20 (dnc)	18 (dnc)	3 (3)
4	60 (dnc)	58 (dnc)	9 (9)
8	142 (dnc)	133 (dnc)	19 (21)

Real part (+PML) $M_x = -0.8, \omega = 30$



$$M_{\rm x} = -0.8, \omega = 30$$

$N_{\rm dom}$	T0	T1	P8
2	14 (47)	10 (25)	3 (3)
4	44 (dnc)	28 (47)	7 (9)
8	94 (dnc)	62 (dnc)	13 (21)

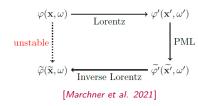
Number of iterations to $r_l = 10^{-6}$: GMRES vs (Jacobi) solver. T: Taylor, P: Padé

- inverse upstream modes significantly deteriorates convergence
- Padé approximations reach high accuracy after N_{dom} iterations

Assessment with PML transmission operators

Let us use a PML for (S_i, S_j) , as approximations of Λ^+

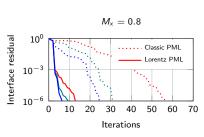
<u>Warning</u>: "classic" PML is unstable for inverse upstream modes ($M_x > 0$)

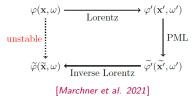


Assessment with PML transmission operators

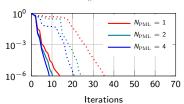
Let us use a PML for (S_i, S_j) , as approximations of Λ^+

Warning: "classic" PML is unstable for inverse upstream modes ($M_x > 0$)





 $M_{\rm x} = -0.8$

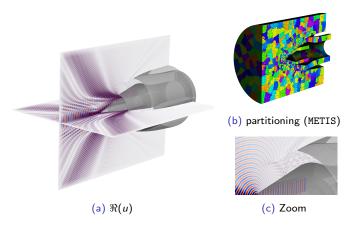


GMRES iterations, $N_{
m dom}=4, \omega=40$

- With a Jacobi solver, a "classic" PML as transmission operator does not converge, even when $M_{\rm x} < 0$!
- → Caution is needed with PML-transmission conditions [Galkowski et al. 2024]

Large scale Schwarz domain decomposition

• For realistic problems we use 2nd order transmission condition Turbofan engine jet noise benchmark at $\omega/2\pi=40$ kHz [Marchner et al. 2025]



Run on Lumi on 65k cores: $N_{\rm dom}=4096,~1.3\times10^9$ unknowns, 96×10^9 nnz Peak memory over MPIs: 18.4 Gb, Its: 555 ($r_1<10^{-4}$), solving time: 15min

Outline

- 1. Time-harmonic problems with convection
- 2. Domain truncation for exterior problems
- 3. Schwarz domain decomposition for convected propagation
- 4. Conclusion

Conclusion

I have presented domain decomposition and domain truncation techniques for convected propagation

- ABCs and PMLs can be extended to convected propagation, with high Mach numbers and convex boundary shape
- The Lorentz transform helps to better understand convected propagation
- Rational approx. of DtN maps are of strong interest for many PDEs
- Deriving corner conditions is currently an open problem

Conclusion

I have presented domain decomposition and domain truncation techniques for convected propagation

- ABCs and PMLs can be extended to convected propagation, with high Mach numbers and convex boundary shape
- The Lorentz transform helps to better understand convected propagation
- Rational approx. of DtN maps are of strong interest for many PDEs
- Deriving corner conditions is currently an open problem

All implementations were performed with GmshDDM and GmshFEM [Royer et al. 2021]

DD29 International Conference

Conclusion

I have presented domain decomposition and domain truncation techniques for convected propagation

- ABCs and PMLs can be extended to convected propagation, with high Mach numbers and convex boundary shape
- The Lorentz transform helps to better understand convected propagation
- Rational approx. of DtN maps are of strong interest for many PDEs
- Deriving corner conditions is currently an open problem

All implementations were performed with GmshDDM and GmshFEM [Royer et al. 2021]

Thank you!

 $\verb|philippe.marchner@univ-grenoble-alpes.fr|\\$

