Towards an efficient domain decomposition solver for industrial time-harmonic flow acoustics

Philippe Marchner

Siemens Industry Software

philippe.marchner@siemens.com

ECCOMAS Congress 2022

Oslo, June 7th, 2022

C. Geuzaine

H. Bériot/P. Barabinot

High frequency flow acoustics

The linearized potential equation High frequency memory limit A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media

Heterogeneous waveguide problem Convected problem in freefield Impact of the partitioning

Application to a large scale industrial problem

The 3D turbofan problem Domain decomposition assessment Solver weak scalability

High frequency flow acoustics

The linearized potential equation High frequency memory limit A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media

Heterogeneous waveguide problem Convected problem in freefield Impact of the partitioning

Application to a large scale industrial problem

Domain decomposition assessment Solver weak scalability

High frequency flow acoustics

The linearized potential equation

High frequency memory limit A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media

Heterogeneous waveguide problem Convected problem in freefield Impact of the partitioning

Application to a large scale industrial problem The 3D turbofan problem Domain decomposition assessment

Solver weak scalability

The linearized potential equation

Scalar equation for the acoustic velocity potential $u = \nabla \mathbf{v}$

Linearized Potential Equation (LPE)

$$\rho_0(\boldsymbol{x})\frac{\mathrm{D}_0}{\mathrm{D}t}\left(\frac{1}{c_0(\boldsymbol{x})^2}\frac{\mathrm{D}_0\boldsymbol{u}}{\mathrm{D}t}\right) - \nabla\cdot\left(\rho_0(\boldsymbol{x})\nabla\boldsymbol{u}\right) = \boldsymbol{f}, \quad \frac{\mathrm{D}_0}{\mathrm{D}t} = \mathrm{i}\boldsymbol{\omega} + \boldsymbol{v}_0(\boldsymbol{x})\cdot\nabla$$

Helmholtz-type problem with convection and heterogeneities

Mathematical difficulties

- oscillatory, non-local solution
- complex valued, strongly indefinite with ω
- unbounded domain
- convection effects

hard to converge with classical iterative methods [*Ernst, Gander 2012*]

Point source in a uniform flow

High frequency flow acoustics

The linearized potential equation High frequency memory limit

Transmission conditions for convective and heterogeneous media

Heterogeneous waveguide problem Convected problem in freefield Impact of the partitioning

Application to a large scale industrial problem The 3D turbofan problem Domain decomposition assessment Solver weak scalability

High frequency memory limit

Industrial example: single tone turbofan intake noise radiation **Current industrial solver:** high-order *p*-FEM, direct solver for $\mathbb{K}\mathbf{u}_h = \mathbf{f}_h$

 $\omega_{\mathrm{bpf}} \leftrightarrow \approx 25$ wavelengths

 $\omega_{\rm bpf}$, $N_{\rm dofs} = 10$ M, nnz = 730 M Direct solver \rightarrow 740 Gb of RAM

 $\downarrow \downarrow$ increase ω ?

 $2 \times \omega_{bpf}$, $N_{dofs} = 73$ M, nnz = 5B Direct solver ≈ 6 Tb of RAM ...

 $\mathcal{O}(\omega^3)$ scaling in memory & time ...

can we distribute the memory cost ? \rightarrow domain decomposition

High frequency flow acoustics

The linearized potential equation High frequency memory limit A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media Heterogeneous waveguide problem Convected problem in freefield Impact of the partitioning

Application to a large scale industrial problem The 3D turbofan problem Domain decomposition assessment Solver weak scalability

A parallel domain decomposition solver

For a domain partition $\Omega = \bigcup_{i=0}^{N_{dom}-1} \Omega_i$, solve in each subdomain Ω_i

Non-overlapping optimal Schwarz formulation

$$\begin{pmatrix} \rho_0 \frac{D_0}{Dt} \left(\frac{1}{c_0^2} \frac{D_0 u_i}{Dt} \right) - \nabla \cdot (\rho_0 \nabla u_i) = 0 \text{ in } \Omega_i, \text{ (LPE)} \\ \rho_0 \left(1 - M_n^2 \right) \left(\partial_{n_i} u_i + i \widetilde{\Lambda}^+ u_i \right) = 0, \text{ on } \Gamma_i^\infty \text{ (radiation condition)} \\ \rho_0 \left(1 - M_n^2 \right) \left(\partial_{n_i} u_i + i \mathcal{S}_i u_i \right) = g_{ij}, \text{ on } \Sigma_{ij}, \text{ (interface condition)}$$

Introduce the interface coupling on Σ_{ij}

$$g_{ij} = \rho_0 \left(1 - M_n^2 \right) \left(-\partial_{n_j} u_j + i S_i u_j \right) \\ = -g_{ji} + i \rho_0 \left(1 - M_n^2 \right) \left(S_i + S_j \right) u_j := \mathcal{T}_{ji} g_{ji} + b_{ji}$$

Rewrite the coupling as a linear system for $\boldsymbol{g} = (g_{ij}, g_{ji})^T$

 T_{ij} and T_{ji} are the iteration operators, and can be written in terms of $\tilde{\Lambda}^+$

High-level algorithmic procedure

Surfacic iteration operators

$$\mathcal{T}_{ji} = rac{\mathcal{S}_i - \widetilde{\Lambda}^+}{\mathcal{S}_j + \widetilde{\Lambda}^+}, \quad \mathcal{T}_{ij} = rac{\mathcal{S}_j + \widetilde{\Lambda}^-}{\mathcal{S}_i - \widetilde{\Lambda}^-}, \quad ext{on } \Sigma_{ij}$$

Iteration matrix eigenvalues: $\lambda_{(I-A)} = 1 \pm \sqrt{\mathcal{T}_{ji}\mathcal{T}_{ij}}$ If we choose $S_i = \tilde{\Lambda}^+$ and $S_j = -\tilde{\Lambda}^-$, we converge in N_{dom} iterations

Parallel iterative algorithm for the process iDo in Ω_i at iteration (n + 1), $\forall j \in D_i$

- 1. given $g_{ii}^{(n)}$, solve $u_i^{(n+1)}$ in Ω_i ,
- 2. update the (n + 1) neighbourhood data through $g_{ji}^{(n+1)} = -g_{ij}^{(n)} + i\rho_0 \left(1 M_n^2\right) (S_i + S_j) u_i^{(n+1)}$ on Σ_{ij} ,

High-level algorithmic procedure

Surfacic iteration operators

$$\mathcal{T}_{ji} = rac{\mathcal{S}_i - \widetilde{\Lambda}^+}{\mathcal{S}_j + \widetilde{\Lambda}^+}, \quad \mathcal{T}_{ij} = rac{\mathcal{S}_j + \widetilde{\Lambda}^-}{\mathcal{S}_i - \widetilde{\Lambda}^-}, \quad ext{on } \Sigma_{ij}$$

Iteration matrix eigenvalues: $\lambda_{(I-A)} = 1 \pm \sqrt{\mathcal{T}_{ji}\mathcal{T}_{ij}}$ If we choose $S_i = \tilde{\Lambda}^+$ and $S_j = -\tilde{\Lambda}^-$, we converge in N_{dom} iterations

Parallel iterative algorithm for the process iDo in Ω_i at iteration (n + 1), $\forall j \in D_i$

- 1. given $g_{ij}^{(n)}$, solve $u_i^{(n+1)}$ in Ω_i ,
- 2. update the (n + 1) neighbourhood data through $g_{ji}^{(n+1)} = -g_{ij}^{(n)} + i\rho_0 \left(1 M_n^2\right) (S_i + S_j) u_i^{(n+1)}$ on Σ_{ij} ,

 $(\widetilde{\Lambda}^+, -\widetilde{\Lambda}^-)$ are **non-local** DtN maps for the LPE \rightarrow design **sparse approximations** $S_i \approx \widetilde{\Lambda}^+$ and $S_j \approx -\widetilde{\Lambda}^ \Leftrightarrow$ approximate Schur complements at the algebraic level

High frequency flow acoustics

The linearized potential equation High frequency memory limit A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media

Heterogeneous waveguide problem Convected problem in freefield Impact of the partitioning

Application to a large scale industrial problem

The 3D turbofan problem Domain decomposition assessment Solver weak scalability

High frequency flow acoustics

The linearized potential equation High frequency memory limit A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media

Heterogeneous waveguide problem

Convected problem in freefield Impact of the partitioning

Application to a large scale industrial problem The 3D turbofan problem Domain decomposition assessment Solver weak scalability

Waveguide problem with straight partitions

Example: transverse heterogeneous Helmholtz problem $c_0(y)$, $\rho_0(y)$

$$\partial_x^2 u + \rho_0(y)^{-1} \partial_y \left(\rho_0(y)\partial_y\right) u + \omega^2 c_0(y)^{-2} u = 0$$

Half-space DtN map for positive outgoing waves

$$\widetilde{\Lambda^{+}} = +\sqrt{\omega^{2}c_{0}^{-2} + \rho_{0}^{-1}\nabla_{\Gamma}\left(\rho_{0}\nabla_{\Gamma}\right)}$$

 $\bar{\Lambda^+}$ is pseudo-differential, we need local approximations

Local square-root approximation

Two points of view: $\omega \to +\infty$ or $k_0 \to +\infty$, $k_0 = \omega/c_0(y)$

Operator choice before localization [Marchner et al. SIAP 2022]

$$\Lambda_{\omega} = \omega \sqrt{1 + \left[\left(c_0^{-2} - 1 \right) + \frac{\rho_0^{-1} \nabla_{\Gamma} \left(\rho_0 \nabla_{\Gamma} \right)}{\omega^2} \right]}, \quad \Lambda_{k_0} = k_0 \sqrt{1 + \frac{\Delta_{\Gamma}}{k_0^2}}$$

Use complexified Padé or Taylor approximations (N, α) to localize

order of approximation N,

• square-root rotation branch-cut of angle α [Milinazzo et al. 1997] \rightarrow captures both propagative and evanescent modes

$$\Lambda(z) = e^{\mathrm{i} lpha/2} \sqrt{1+z}, \ z = [e^{-\mathrm{i} lpha} (1+X) - 1]$$

A family of local DDM transmission conditions S_i

- \Rightarrow Padé-based: ABC^{N, \alpha}_{ω} and ABC^{N, \alpha}_{k_0}
- \Rightarrow Taylor-based: ABC^{T0, α}, ABC^{T2, α}, ABC^{T2, α}, ABC^{T2, α}

Gaussian waveguide - Iteration matrix

Gaussian profile $c_0(y) = 1.25 \left(1 - 0.4e^{-32(y-H/2)^2}\right)$, $\rho_0(y) = c_0^2(y)$ Iteration matrix eigenvalues: $\lambda_{(\mathcal{I}-\mathcal{A})} = 1 \pm \sqrt{\mathcal{T}_{ji}(y)\mathcal{T}_{ij}(y)}$

Figure: Theoretical eigenvalues of the DDM iteration matrix, $\omega = 50, H = 1$

- Usual Padé approximation $S_i = ABC_{k_0}^{N,\alpha}$
- New Padé approximation $S_i = ABC_{\omega,S}^{N,\alpha} \rightarrow almost perfect clustering$

Impact on the iterative solver

Large PML on Γ_∞ - input mode $\mathit{n}=4$ - $\mathit{N}_{dom}=8$

N _{dom}	$ABC_{k_0}^{T0,-\pi/4}$	$ABC_{k_0}^{T2,-\pi/4}$	$ABC_{k_0}^{4(8), -\pi/4}$	$ABC^{4(8),-\pi/4}_{\omega}$
8	111	74	42 (42)	20 (8)

Table: GMRES iterations to 10^{-6} at $\omega = 160, d_{\lambda} = 24$

Convergence in N_{dom} iterations \rightarrow continuous block LU factorization

ECCOMAS 2022

High frequency flow acoustics

The linearized potential equation High frequency memory limit A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media

Heterogeneous waveguide problem Convected problem in freefield

Application to a large scale industrial problem The 3D turbofan problem Domain decomposition assessment Solver weak scalability

DtN map for the Linearized Potential Equation

Wave convection by a steady subsonic mean flow M < 1

$$\mathcal{L}(\mathbf{x}, \nabla, \omega) = \frac{D_0}{Dt} \left(\frac{1}{c_0^2} \frac{D_0}{Dt} \right) - \rho_0^{-1} \nabla \cdot (\rho_0 \nabla), \quad \frac{D_0}{Dt} = i\omega + \mathbf{v}_0 \cdot \nabla$$

DtN principal symbol (half-space), $M_x = v_{0,x}/c_0$, $M_y = v_{0,y}/c_0$, $k_0 = \omega/c_0$

$$\lambda_{1}^{+} = \frac{1}{1 - M_{x}^{2}} \left[-M_{x} \left(k_{0} - \xi M_{y} \right) + \sqrt{k_{0}^{2} - 2k_{0}M_{y}\xi - (1 - M^{2})\xi^{2}} \right]$$

valid in the tangent plane approximation, $M_n = \mathbf{v}_0 \cdot \mathbf{n}/c_0, M_\tau = \mathbf{v}_0 \cdot \boldsymbol{\tau}/c_0$

$$\widetilde{\Lambda}^{+} \approx \widetilde{\Lambda}_{1}^{+} = \operatorname{Op}(\lambda_{1}^{+}) = \frac{k_{0}}{1 - M_{n}^{2}} \left(-M_{n} + iM_{n}M_{\tau}\frac{\nabla\Gamma}{k_{0}} + \sqrt{1 + X} \right),$$
$$X = -2iM_{\tau}\frac{\nabla\Gamma}{k_{0}} + (1 - M^{2})\frac{\Delta\Gamma}{k_{0}^{2}}, \quad M = \left\|\mathbf{v}_{0}\right\|/c_{0}$$

Complex Padé approximants for $\sqrt{1+X} \Rightarrow ABC_1^{N,\alpha}$ Complex Taylor approximants $\Rightarrow ABC_1^{T0,\alpha}$ and $ABC_1^{T2,\alpha}$

ECCOMAS 2022

Convected problem in freefield - circular interfaces

Numerical solution after 4 GMRES DDM iterations. <u>Parameters:</u> M = 0.9, FEM-order = 9, $d_{\lambda} = 8$, $N_{dom} = 5$, $\omega = 6\pi$.

Padé conditions are robust for high Mach numbers

High frequency flow acoustics

The linearized potential equation High frequency memory limit A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media

Heterogeneous waveguide problem Convected problem in freefield Impact of the partitioning

Application to a large scale industrial problem The 3D turbofan problem Domain decomposition assessment

Solver weak scalability

Convected problem in freefield - arbitrary decomposition

Automatic partitioning

- Cross-points
 → harder to design ABCs
- Industrial need good load balancing between subproblems
- Shorter connectivity graph $\mathcal{O}(\sqrt{N_{\text{dom}}})$

We choose ABC^{T2, $-\pi/2$} for arbitrary decomposition

High frequency flow acoustics

The linearized potential equation High frequency memory limit A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media

Heterogeneous waveguide problem Convected problem in freefield Impact of the partitioning

Application to a large scale industrial problem

The 3D turbofan problem Domain decomposition assessment Solver weak scalability

High frequency flow acoustics

The linearized potential equation High frequency memory limit A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media

Heterogeneous waveguide probler Convected problem in freefield Impact of the partitioning

Application to a large scale industrial problem The 3D turbofan problem

Domain decomposition assessment Solver weak scalability

The 3D turbofan problem

Given a flight configuration (mean flow), predict the radiated noise from the fan, at multiples of the blade passing frequency $\omega_{bpf}/(2\pi) = 1300 \text{ Hz}$

The mean flow is pre-computed and **interpolated** on the acoustic mesh

High frequency flow acoustics

The linearized potential equation High frequency memory limit A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media Heterogeneous waveguide problem

Convected problem in freefield Impact of the partitioning

Application to a large scale industrial problem The 3D turbofan problem Domain decomposition assessment Solver weak scalability

DDM for the 3D turbofan problem

 $ω_{bpf}$ - $N_{dofs} = 10M$ - nnz = 730M ≈ 25 wavelengths in Ω Direct solver \rightarrow 740 Gb RAM for factorization

Parallel GmshDDM solver (mono-thread)

From $N_{\rm dom} > 128$, under 10 minutes and less than 3Gb per process Iteration number for $N_{\rm dom} = 64$

- ABC^{T2, $-\pi/2$}: 372 GMRES iterations to reach 10^{-6}
- ABC^{T0,0}: > 2000 GMRES iterations to reach 10^{-3}

DDM for the 3D turbofan problem

 $2 \times \omega_{bpf}$ - $N_{dofs} = 73M$ - nnz = 5B ≈ 50 wavelengths in Ω Parallel GmshDDM solver (mono-thread), $N_{dom} = \#$ MPI = 128 \rightarrow 2hours with 26 Gb peak memory, 712 GMRES iterations (with lining)

Figure: Real part of the acoustic velocity potential for the mode (48,1) at $2 \times \omega_{bpf}$ (2600 Hz) without (left) and with (right) acoustic lining treatment.

High frequency flow acoustics

The linearized potential equation High frequency memory limit A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media

Heterogeneous waveguide problem Convected problem in freefield Impact of the partitioning

Application to a large scale industrial problem

The 3D turbofan problem Domain decomposition assessment Solver weak scalability

Solver weak scalability

3D Helmholtz problem with $d_{\lambda} = 7.5$ points per wavelength

Figure: Weak scaling timing for 1 iteration (LUMI CPU partition)

Limitations

- memory load balancing: [20-34] Gb on 1024 processes
- number of iterations scales as $\mathcal{O}(N_{dom}^{1/3})$ in 3D

High frequency flow acoustics

The linearized potential equation High frequency memory limit A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media

Heterogeneous waveguide problem Convected problem in freefield Impact of the partitioning

Application to a large scale industrial problem The 3D turbofan problem Domain decomposition assessment

Solver weak scalability

Conclusion

Summary

- Non-overlapping Schwarz domain decomposition for flow acoustics \rightarrow distributed memory solver
- Transmission conditions with convection and heterogeneities
- Proof of concept for a 3D turbofan industrial problem
 → further computations are ongoing

Limitations

- The iterations does not scale with N_{dom} (coarse space is needed)
- Cross-points, broken-curved boundaries hamper the convergence

Perspectives

- Modern volumic discretization techniques: HDG, HHO, adaptive p-FEM [*Bériot et al. 2016, 2019*]
- Extension to Pierce equation \rightarrow turbofan exhaust [Spieser, Bailly 2020]