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The linearized potential equation

Scalar equation for the acoustic velocity potential u = ∇v

Linearized Potential Equation (LPE)

ρ0(x)
D0

Dt

(
1

c0(x)2
D0u

Dt

)
−∇ · (ρ0(x)∇u) = f ,

D0

Dt
= iω + v 0(x) · ∇

Helmholtz-type problem with convection and heterogeneities

Mathematical difficulties

• oscillatory, non-local solution

• complex valued, strongly
indefinite with ω

• unbounded domain

• convection effects

hard to converge with classical

iterative methods [Ernst, Gander 2012 ]

Point source in a uniform flow

M = ∥v 0∥ /c0 = 0.6

ECCOMAS 2022 5 / 31



Outline

High frequency flow acoustics
The linearized potential equation
High frequency memory limit
A parallel domain decomposition solver

Transmission conditions for convective and heterogeneous media
Heterogeneous waveguide problem
Convected problem in freefield
Impact of the partitioning

Application to a large scale industrial problem
The 3D turbofan problem
Domain decomposition assessment
Solver weak scalability

Conclusion

ECCOMAS 2022 6 / 31



High frequency memory limit

Industrial example: single tone turbofan intake noise radiation
Current industrial solver: high-order p-FEM, direct solver for Kuh = fh

ωbpf ↔≈ 25 wavelengths

ωbpf, Ndofs = 10M, nnz = 730M
Direct solver → 740 Gb of RAMw� increase ω ?

2× ωbpf, Ndofs = 73M, nnz = 5B
Direct solver ≈ 6 Tb of RAM ...

O(ω3) scaling in memory & time ...

can we distribute the memory cost ? → domain decomposition
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A parallel domain decomposition solver

For a domain partition Ω =
⋃Ndom−1

i=0 Ωi , solve in each subdomain Ωi

Non-overlapping optimal Schwarz formulation
ρ0

D0

Dt

(
1
c20

D0ui
Dt

)
−∇ · (ρ0∇ui ) = 0 in Ωi , (LPE)

ρ0
(
1−M2

n
)
(∂niui + ıΛ̃+ui ) = 0, on Γ∞i (radiation condition)

ρ0
(
1−M2

n
)
(∂niui + ıSiui ) = gij , on Σij , (interface condition)

Introduce the interface coupling on Σij

gij = ρ0
(
1−M2

n
) (

−∂njuj + ıSiuj
)

= −gji + ıρ0
(
1−M2

n
)
(Si + Sj)uj := Tjigji + bji

Rewrite the coupling as a linear system for g = (gij , gji )
T

(I − A)︸ ︷︷ ︸
iteration matrix

g︸︷︷︸
interface unknowns

= b︸︷︷︸
physical sources

, A =

(
0 Tji
Tij 0

)

Tij and Tji are the iteration operators, and can be written in terms of Λ̃+
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High-level algorithmic procedure

Surfacic iteration operators

Tji =
Si − Λ̃+

Sj + Λ̃+
, Tij =

Sj + Λ̃−

Si − Λ̃−
, on Σij

Iteration matrix eigenvalues: λ(I−A) = 1±
√
TjiTij

If we choose Si = Λ̃+ and Sj = −Λ̃−, we converge in Ndom iterations

Parallel iterative algorithm for the process i
Do in Ωi at iteration (n + 1) , ∀j ∈ Di

1. given g
(n)
ij , solve u

(n+1)
i in Ωi ,

2. update the (n + 1) neighbourhood data through

g
(n+1)
ji = −g

(n)
ij + ıρ0

(
1−M2

n
)
(Si + Sj)u

(n+1)
i on Σij ,

(Λ̃+,−Λ̃−) are non-local DtN maps for the LPE

→ design sparse approximations Si ≈ Λ̃+ and Sj ≈ −Λ̃−

⇔ approximate Schur complements at the algebraic level
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Waveguide problem with straight partitions

Domain partition: Ω =
⋃Ndom−1

i=0 Ωi , Σij = ∂Ωi

⋂
∂Ωj , j ̸= i

∂nu = 0 Γ2

Γ1
∂nu = g

Γ∞
(NRBC)

0

H

L x

y

Ω0, u0

Σ01, g01

Ω1, u1

Σ12, g12

Ω2, u2

Σ23, g23

Ω3, u3

Example: transverse heterogeneous Helmholtz problem c0(y), ρ0(y)

∂2
xu + ρ0(y)

−1∂y (ρ0(y)∂y ) u + ω2c0(y)
−2u = 0

Half-space DtN map for positive outgoing waves

Λ̃+ = +
√

ω2c−2
0 + ρ−1

0 ∇Γ (ρ0∇Γ)

Λ̃+ is pseudo-differential, we need local approximations
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Local square-root approximation

Two points of view: ω → +∞ or k0 → +∞, k0 = ω/c0(y)

Operator choice before localization [Marchner et al. SIAP 2022 ]

Λω = ω

√
1 +

[(
c−2
0 − 1

)
+

ρ−1
0 ∇Γ (ρ0∇Γ)

ω2

]
, Λk0 = k0

√
1 +

∆Γ

k2
0

Use complexified Padé or Taylor approximations (N, α) to localize

• order of approximation N,

• square-root rotation branch-cut of angle α [Milinazzo et al. 1997 ]

→ captures both propagative and evanescent modes

Λ(z) = eiα/2
√
1 + z , z = [e−iα(1 + X )− 1]

A family of local DDM transmission conditions Si

⇒ Padé-based: ABCN,α
ω and ABCN,α

k0

⇒ Taylor-based: ABCT0,α, ABCT2,α
k0

, ABCT2,α
ω
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Gaussian waveguide - Iteration matrix

Gaussian profile c0(y) = 1.25
(
1− 0.4e−32(y−H/2)2

)
, ρ0(y) = c20 (y)

Iteration matrix eigenvalues: λ(I−A) = 1±
√

Tji (y)Tij(y)

0.5 1 1.5

−0.5

0.5

<(λ)

=(λ)

y = 0.35

0.5 1 1.5

−0.5

0.5

<(λ)

=(λ)

y = 0.5

ABCT0,−π/2

ABC
T2,−π/2
k0

ABC
6,−π/2
k0

ABC
6,−π/2
ω,S

Figure: Theoretical eigenvalues of the DDM iteration matrix, ω = 50, H = 1

• Usual Padé approximation - Si = ABCN,α
k0

• New Padé approximation - Si = ABCN,α
ω,S → almost perfect clustering
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Impact on the iterative solver

Large PML on Γ∞ - input mode n = 4 - Ndom = 8

Ndom ABC
T0,−π/4
k0

ABC
T2,−π/4
k0

ABC
4(8),−π/4
k0

ABC4(8),−π/4
ω

8 111 74 42 (42) 20 (8)

Table: GMRES iterations to 10−6 at ω = 160, dλ = 24

Convergence in Ndom iterations → continuous block LU factorization
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DtN map for the Linearized Potential Equation

Wave convection by a steady subsonic mean flow M < 1

L (x ,∇, ω) =
D0

Dt

(
1

c20

D0

Dt

)
− ρ−1

0 ∇ · (ρ0∇) ,
D0

Dt
= iω + v0 · ∇

DtN principal symbol (half-space), Mx = v0,x/c0, My = v0,y/c0, k0 = ω/c0

λ+
1 =

1

1−Mx
2

[
−Mx (k0 − ξMy ) +

√
k2
0 − 2k0Myξ − (1−M2) ξ2

]
valid in the tangent plane approximation, Mn = v0 · n/c0, Mτ = v0 · τ/c0

Λ̃+ ≈ Λ̃+
1 = Op(λ+

1 ) =
k0

1−Mn
2

(
−Mn + iMnMτ

∇Γ

k0
+
√
1 + X

)
,

X = −2iMτ
∇Γ

k0
+
(
1−M2

) ∆Γ

k2
0

, M = ∥v0∥ /c0

Complex Padé approximants for
√
1 + X ⇒ ABCN,α

1

Complex Taylor approximants ⇒ ABCT0,α
1 and ABCT2,α

1
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Convected problem in freefield - circular interfaces

(a) ABC
4,−π/4
1 , EL2 = 1.7% (b) ABC

T2,−π/4
1 , EL2 = 24%

Numerical solution after 4 GMRES DDM iterations.
Parameters: M = 0.9, FEM-order = 9, dλ = 8, Ndom = 5, ω = 6π.

Padé conditions are robust for high Mach numbers
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Convected problem in freefield - arbitrary decomposition

Automatic partitioning

• Cross-points
→ harder to design ABCs

• Industrial need - good load
balancing between subproblems

• Shorter connectivity graph -
O(

√
Ndom)

Ndom = 256

0 0.2 0.4 0.6 0.8

50

100

150

200

Mach number

It
er
at
io
n
s

Ndom = 16

2 4 8 16 32 64 128 256
16

32

64

128

256

O(
√

Ndom)

Ndom

M = 0.7

ABCT0,0

ABCT2,−π/2

ABC
4,−π/2
S

We choose ABCT2,−π/2 for arbitrary decomposition
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The 3D turbofan problem

Given a flight configuration (mean flow), predict the radiated noise from
the fan, at multiples of the blade passing frequency ωbpf/(2π) = 1300 Hz

D0
Dt

(
1
c20

D0
Dt

)
− ρ−1

0 ∇ · (ρ0∇)

Ω Γ∞

Γs

Γ`

acoustic lining

ρ0(x), c0(x),v0(x)

Boundary conditions

• Ingard-Myers on Γℓ
• PML (active) on Γs

• Fixed annular Bessel
mode on Γs

• PML (passive) on Γ∞

The mean flow is pre-computed and interpolated on the acoustic mesh
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DDM for the 3D turbofan problem

ωbpf - Ndofs = 10M - nnz = 730M ≈ 25 wavelengths in Ω
Direct solver → 740 Gb RAM for factorization

2 8 32 128 512
64

128

256

512

1024

O
(
N

1/3
dom

)

# MPI processes

G
M
R
E
S
it
er
at
io
n
s

2 8 32 128 512
100

101

102

# MPI processes

P
ea
k
m
em

or
y
(G

b
)

Min Max

Parallel GmshDDM solver (mono-thread)
From Ndom > 128, under 10 minutes and less than 3Gb per process
Iteration number for Ndom = 64

• ABCT2,−π/2: 372 GMRES iterations to reach 10−6

• ABCT0,0: > 2000 GMRES iterations to reach 10−3
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DDM for the 3D turbofan problem

2× ωbpf - Ndofs = 73M - nnz = 5B ≈ 50 wavelengths in Ω
Parallel GmshDDM solver (mono-thread), Ndom = # MPI = 128
→ 2hours with 26 Gb peak memory, 712 GMRES iterations (with lining)

Figure: Real part of the acoustic velocity potential for the mode (48, 1) at
2× ωbpf (2600 Hz) without (left) and with (right) acoustic lining treatment.
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Solver weak scalability

3D Helmholtz problem with dλ = 7.5 points per wavelength

8 16 32 64 128 256 512 1024
0

20

40

60

80

100
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E
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cy

(%
)
/
8
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o
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.

4
8
16
32
64
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256
512
1024

T
ot
al

#
d
of
s
(m

ill
io
n
s)

Figure: Weak scaling timing for 1 iteration (LUMI CPU partition)

Limitations

• memory load balancing: [20-34] Gb on 1024 processes

• number of iterations scales as O(N
1/3
dom) in 3D
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Conclusion

Summary

• Non-overlapping Schwarz domain decomposition for flow acoustics
→ distributed memory solver

• Transmission conditions with convection and heterogeneities

• Proof of concept for a 3D turbofan industrial problem
→ further computations are ongoing

Limitations

• The iterations does not scale with Ndom (coarse space is needed)

• Cross-points, broken-curved boundaries hamper the convergence

Perspectives

• Modern volumic discretization techniques: HDG, HHO, adaptive
p-FEM [Bériot et al. 2016, 2019 ]

• Extension to Pierce equation → turbofan exhaust [Spieser, Bailly 2020 ]

ECCOMAS 2022 31 / 31


	High frequency flow acoustics
	The linearized potential equation
	High frequency memory limit
	A parallel domain decomposition solver

	Transmission conditions for convective and heterogeneous media
	Heterogeneous waveguide problem
	Convected problem in freefield
	Impact of the partitioning

	Application to a large scale industrial problem
	The 3D turbofan problem
	Domain decomposition assessment
	Solver weak scalability

	Conclusion

	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


