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The uncertainty quantification problem in FWI SE I S COPE

Full Waveform Inversion

Given seismic observations dobs, recover geological model m(x)
by minimizing a data misfit, e.g. 1/2∥dcal[m]− dobs∥2L2

Elastic Marmousi example (Liu and Peter (2020))

The inversion is ill-posed

→ non-unique reconstruction

Why ?

• noise in the observations dobs

• physical modeling error (acoustic, elastic)

• cycle skipping

• lack of illumination in deep regions

• insufficient frequency content

• cross-talks between parameters

• . . .

One inversion is not enough for decision-making

Uncertainty quantification : quantify the distribution of models consistent with the observations

The solution to the inverse problem is a probability distribution π(m|dobs) (Tarantola and Valette (1982))
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Bayesian formulation SE I S COPE

Inverse problem : given noisy observations dobs ∈ Rnobs , recover model m(x) ∈ Rd .

A common assumption : additive Gaussian noise

dobs = F(m) + η, η ∼ N(0,Σ)

• Σ ∈ Rnobs×nobs : data covariance matrix → observation noise, model error, discretization, . . .

• F : Rd → Rnobs : forward map, F(m) := dcal[m]

Data likelihood distribution : π(dobs|m) ∝ exp
(
− 1

2
∥dcal[m]− dobs∥2Σ−1

)

Bayesian statistics

Given some prior knowledge πprior(m), find the posterior distribution (Kaipio and Somersalo (2006))

Bayes theorem for inverse problems

πpost(m) := π(m|dobs) =
π(dobs|m)πprior(m)

π(dobs)
, π(dobs) ̸= 0

Gaussian prior πprior(m) ∼ N(m0,Σ0) ⇒ πpost(m) ∝ exp
(
− 1

2
∥dcal[m]− dobs∥2Σ−1− 1

2
∥m −m0∥2Σ−1

0

)
If F is linear, the posterior is also Gaussian with explicitly known mean and covariance
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Sampling the posterior in FWI SE I S COPE

The challenges in FWI :

• Nonlinear forward map F ⇒ non-Gaussian posterior

• High-dimensional model space (d ≫ 1)

• Expensive evaluation of F : one sample ≈ one wave propagation PDE solve

The sampling task : generate samples {m(i)}Ns
i=1 of models from πpost(m)

Direct sampling of the posterior is computationally intractable !

Brief state of the art

• Small to moderate size problems : MCMC, HMC (Gebraad et al. (2020)), RJMCMC (Sen and Biswas (2017))

• Large-scale : Hessian at MAP (Bui-Thanh et al. (2013)), GVI (Zhang et al. (2023)), Norm. flows (Orozco et al. (2025))

Markov Chain

Monte Carlo

variational inference

SVGD, normalizing flows
Gaussian propagation

EnKF, Gauss VI

optimization, local analysis

at maximum a posteriori

?

costly, global exploration cheaper, local exploration

Question : reduce the cost, and go beyond local exploration
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Rosenbrock density example SE I S COPE

Rosenbrock function adapted to sampling : (x⋆
1 , x

⋆
2 ) = (1, 1) is the maximum a posteriori (MAP)

# forward map calls : Random walk MCMC > SVGD > Gaussian VI > Hessian at MAP

Questions

• How to design efficient methods : exploration vs accuracy w.r.t. πpost vs cost ?

• What statistical information do we want from the posterior ?
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Standard FWI as gradient flow in Euclidean space SE I S COPE

In FWI, we minimize C(m) = ∥dcal[m]− dobs∥2L2 iteratively

The usual gradient descent scheme

mk+1 = mk − αkP(mk)∇C(mk), preconditioner P,

is an explicit Euler discretization of a gradient flow in Rd

dm

dτ
= −∇PC(m) := −P(m)∇C(m), m0 = minit

We need three ingredients

1. a misfit function C(m)

2. a space equipped with an inner product (Rd , ⟨·, ·⟩P−1) which defines the gradient ∇P

3. a numerical scheme

Can we lift this picture on probability densities ?
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Probabilistic FWI as gradient flow in probability space SE I S COPE

We need three ingredients

1. a misfit functional to minimize : relative

information between µ and πpost

KL(µ||πpost) =

∫
µ(m) log

(
µ(m)

πpost(m)

)
dm

2. a geometry on densities, induced by the

2-Wasserstein metric, which defines the

gradient ∇W2 (Santambrogio (2015); Engquist

et al. (2016))

3. a numerical scheme to follow the flow

• how to represent the density µ ?

• how to discretize the flow in “time” ?
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Probabilistic FWI as gradient flow in probability space SE I S COPE

Idea. Gradient flows on probabilities describe how mass is transported to minimize an objective functional.

Gradient flow of the KL divergence with 2-Wasserstein metric

∂τµτ = −∇W2KL(µτ∥πpost) ⇐⇒ ∂τµτ = ∇·(µτ∇C)+∆µτ (Fokker–Planck equation)

Convergence guarantee : For a convex misfit C (or log-concave πpost), µτ → πpost as τ → ∞.

Numerical schemes ⇒ sampling algorithms

Particle representation

• Langevin dynamics

• SVGD

Parametric representation

• Gaussian variational inference

• Normalizing flows

In both standard and probabilistic FWI, the dynamics of the flow is determined by the geometry.
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A synthetic reference benchmark SE I S COPE

free surface at z = 0 noise-free reference, dense acquisition

2D layer model: m = (v2, v3, v4, v5, v6)T . Forward map (acoustic) : reflectivity method (Mallick and Frazer (1987))

v1 = 1500 m/s fixed, single Ricker source f0 = 5 Hz, T = 2.0 sec, 16 receivers, 20 dB SNR
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Reference posterior distribution SE I S COPE

πpost(m) ∝ exp

(
−1

2
∥dcal[m]− dobs∥2Σ−1 −

1

2
∥m −m0∥2Σ−1

0

)
Broad Gaussian prior πprior(m) ∼ N(m0,Σ0)
m0 = (2, 2.5, 2.5, 3, 3)T km/s

Σ0 = diag(1.2, 1.52, 1.52, 1.52, 1.52) km/s

Σ : diag covariance, 8:1 energy balance with prior

Reference posterior → O(105) forward calls

Posterior features

• non-Gaussian, anisotropic

• multi-modal (v4, v5 marginals)

• data information weakens with depth

→ higher uncertainty
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Benchmarking standard methods - impact of initialization SE I S COPE

SVGD - µinit = N(m0,Σ0/2), µinit = N(m0,Σ0/6) with 100 particles

Number of forward calls : 2× nit × nparticles → O(104)

Gaussian VI and Hessian at MAP - µinit = N(m0,Σ0/2), µinit = N(m0,Σ0/6)

Number of forward calls :

• Gauss VI : 2× nit × nquad → O(103)

• Hessian MAP → O(102)

Standard schemes struggle on complex posteriors,

→ cycle-skipping
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Towards large scale UQ on field data SE I S COPE

How to scale to larger problems ? EnKF as a Gaussian variational update with dimension reduction

Gaussian variational inference

min
m,C

KL(µ||πpost), with µ(m) ∼ N(m,C)

+ mean update m only

- full covariance matrix

- 1st order scheme

Ensemble Kalman Filter (EnKF) - Evensen (2003)

µ(m) ≈ 1
N

∑N
i=1 δ(m −m(i))

- N particles updates m(i), i = {1, . . . ,N}

+ low-rank covariance from particles

+ 2nd order, Gauss-Newton scheme

Application to field data - Hoffmann et al. (2024)

• 4-component Ocean Bottom Cable device

• VTI acoustic model, pressure component for the

inversion : Vp inversion only

• 2048 reciprocal sources, 2.5-5Hz frequency band

• Sequential Bayes updates by batch of 16 shots

→ 3 ℓ-BFGS + 1 EnKF update for each batch

Wavefield at t = 3.3 s on mean FWI-EnKF model
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Towards large scale UQ on field data SE I S COPE

Initial ensemble in a local valley to avoid cycle-skipping, N = 50 particles enough for Gaussian uncertainty

Final mean and variance at 3 points of interest, section at x = 2.95 km

EnKF-FWI : reasonably cheap UQ where richer inference methods are (yet) too expensive
15



Conclusion SE I S COPE

Summary

• Uncertainty quantification (UQ) for FWI requires sampling a non-Gaussian posterior

• Gradient flow theory provides a rigorous framework to understand and design UQ algorithms

• The framework guides novel physics-aware algorithms with convergence guarantees

→ Gaussian mixture VI, EnKF without collapse, ℓ-BFGS like preconditioning, . . .

• Scaling to large problems requires dimension reduction and careful preconditioning

Takeaways

• UQ is fundamentally about moving probability mass wisely

• Gradient flows connects sampling algorithms with the physics and difficulties of FWI

16



Conclusion SE I S COPE

Summary

• Uncertainty quantification (UQ) for FWI requires sampling a non-Gaussian posterior

• Gradient flow theory provides a rigorous framework to understand and design UQ algorithms

• The framework guides novel physics-aware algorithms with convergence guarantees

→ Gaussian mixture VI, EnKF without collapse, ℓ-BFGS like preconditioning, . . .

• Scaling to large problems requires dimension reduction and careful preconditioning

Takeaways

• UQ is fundamentally about moving probability mass wisely

• Gradient flows connects sampling algorithms with the physics and difficulties of FWI

16



Acknowledgments SE I S COPE

Thank you for your attention and thanks to

• All SEISCOPE sponsors : AKERBP, DUG, EXXONMOBIL, GEOLINKS, JGI, PETROBRAS,

SHEARWATER, SHELL, TOTALENERGIES and VIRIDIEN

• IDRIS, TGCC and CINES, French national computing centers

• GRICAD, Grenoble computing center

• SWAN, Hewlett Packard Enterprise (HPE) Cray XC System

• All SEISCOPE project members

17



Questions ?

philippe.marchner@univ-grenoble-alpes.fr
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