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The uncertainty quantification problem



The uncertainty quantification problem in FWI AT

Full Waveform Inversion The inversion is ill-posed

Given seismic observations dops, recover geological model m(x) — non-unique reconstruction
by minimizing a data misfit, e.g. 1/2||dcai[m] — dobs||i2

Elastic Marmousi example (Liu and Peter (2020))
Null-space sampled VP 4 (D, ;7 = 1.98e — 2)
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The uncertainty quantification problem in FWI AT

Full Waveform Inversion The inversion is ill-posed

Given seismic observations dops, recover geological model m(x) — non-unique reconstruction
L . 2
by minimizing a data misfit, e.g. 1/2|dcai[m] — dobs||7> Why ?

Elastic Marmousi example (Liu and Peter (2020))
Null-space sampled VP 4 (D, ;7 = 1.98e — 2)
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Uncertainty quantification : quantify the distribution of models consistent with the observations
The solution to the inverse problem is a probability distribution 7(m|dobs) (Tarantola and Valette (1982))



Bayesian formulation

Inverse problem : given noisy observations dobs € R, recover model m(x) € RY.
A common assumption : additive Gaussian noise

| dobs = F(m) + 1, 1 ~N(©O,%)|

e Y € IRMbs*Mbs : data covariance matrix — observation noise, model error, discretization, ...
o F:R? — R™ : forward map, F(m) := deal[m]
Data likelihood distribution : 7(dobs|m) o< exp (—%||dca|[m] — dobstz,l)



Bayesian formulation

Inverse problem : given noisy observations dobs € R, recover model m(x) € RY.
A common assumption : additive Gaussian noise

| dobs = F(m) + 1, 1 ~N(©O,%)|

e Y € IRMbs*Mbs : data covariance matrix — observation noise, model error, discretization, ...
o F:R? — R™ : forward map, F(m) := deal[m]
Data likelihood distribution : 7(dobs|m) o< exp (—%||dca|[m] — dobstz,l)

Bayesian statistics
Given some prior knowledge myrior(m), find the posterior distribution (Kaipio and Somersalo (2006))

Bayes theorem for inverse problems
ﬂ-(dobslm)ﬂ-prior(m) 7T(dobs) ?é 0

Tpost(M) := (M| dobs) = (o) g

Gaussian prior mprior(m) ~ N(mo, o) = Tpost(m) o< exp (—%||dca|[m] — dobsH%_l—%Hm — monzo_l)

If F is linear, the posterior is also Gaussian with explicitly known mean and covariance



Sampling the posterior in FWI

The challenges in FWI :

e Nonlinear forward map F = non-Gaussian posterior
e High-dimensional model space (d > 1)
e Expensive evaluation of JF : one sample ~ one wave propagation PDE solve

The sampling task : generate samples {m()}", of models from mpost(m)

Direct sampling of the posterior is computationally intractable !



Sampling the posterior in FWI AT

The challenges in FWI :

e Nonlinear forward map F = non-Gaussian posterior
e High-dimensional model space (d > 1)
e Expensive evaluation of JF : one sample ~ one wave propagation PDE solve

The sampling task : generate samples {m()}", of models from mpost(m)

Direct sampling of the posterior is computationally intractable !
Brief state of the art

e Small to moderate size problems : MCMC, HMC (Gebraad et al. (2020)), RIMCMC (Sen and Biswas (2017))
e Large-scale : Hessian at MAP (Bui-Thanh et al. (2013)), GVI (Zhang et al. (2023)), Norm. flows (Orozco et al. (2025))

Markov Chain variational inference Gaussian propagation optimization, local analysis
Monte Carlo SVGD, normalizing flows EnKF, Gauss VI at maximum a posteriori

A
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costly, global exploration cheaper, local exploration



Rosenbrock density example ZTETScoRE

Rosenbrock function adapted to sampling : (x{',x3') = (1, 1) is the maximum a posteriori (MAP)
MCMC SVGD Gauss VI Hessian MAP
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Rosenbrock density example ZTETScoRE

Rosenbrock function adapted to sampling : (x{',x3') = (1, 1) is the maximum a posteriori (MAP)
MCMC SVGD Gauss VI Hessian MAP

X1

# forward map calls : Random walk MCMC > SVGD > Gaussian VI > Hessian at MAP
Questions
e How to design efficient methods : exploration vs accuracy w.r.t. mpost VS cost ?

e What statistical information do we want from the posterior ?
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Gradient flows in probability space - a methodological framework for sampling



Standard FWI as gradient flow in Euclidean space

In FWI, we minimize C(m) = ||dcai[m] — dops |22 iteratively
The usual gradient descent scheme

M1 = me — o P(mi )V C(my),  preconditioner P,

is an explicit Euler discretization of a gradient flow in R¢

37:_1 = —=VpC(m):=—-P(m)VC(m), mo= mini




Standard FWI as gradient flow in Euclidean space

In FWI, we minimize C(m) = ||dcai[m] — dops |22 iteratively

The usual gradient descent scheme

M1 = me — o P(mi )V C(my),  preconditioner P,

is an explicit Euler discretization of a gradient flow in R¢

m*(z) ~ argmin C(m)
meR"

37:_1 = —=VpC(m):=—-P(m)VC(m), mo= mini

We need three ingredients

1. a misfit function C(m)
2. a space equipped with an inner product (R?, (-,-)p—1) which defines the gradient Vp

3. a numerical scheme

Can we lift this picture on probability densities ?



Probabilistic FWI as gradient flow in probability space

f10(m) = Tprion () We need three ingredients
- / 1. a misfit functional to minimize : relative
-
. information between g and mpost
el KLllt0) = [ ) tog (L2 aim
Tpost (M)

[ " 3tll-t = —VW2KL(lltH7l’post)
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Probabilistic FWI as gradient flow in probability space

Ho(11) = Tprior(m) We need three ingredients

/ 1. a misfit functional to minimize : relative
[ ) .
. information between g and mpost

post () KL (| [mpost) = /,u(m) log <%) dm
Tpost M
P
- adl Ogpy = —VW2KL(lltH7l’post)
9 2. a geometry on densities, induced by the
’ - 2-Wasserstein metric, which defines the
i — gradient Vyy, (Santambrogio (2015); Engquist

et al. (2016))
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Ho(11) = Tprior(m) We need three ingredients

/ 1. a misfit functional to minimize : relative
[ ) .
. information between g and mpost

post () KL (| [mpost) = /,u(m) log <%) dm
Tpost M
P
- adl Ogpy = —VW2KL(lltH7l’post)
9 2. a geometry on densities, induced by the
’ - 2-Wasserstein metric, which defines the
i — gradient Vyy, (Santambrogio (2015); Engquist

et al. (2016))
3. a numerical scheme to follow the flow

e how to represent the density p ?
e how to discretize the flow in “time” ?



Probabilistic FWI as gradient flow in probability space

Idea. Gradient flows on probabilities describe how mass is transported to minimize an objective functional.

Gradient flow of the KL divergence with 2-Wasserstein metric

Orpir = =V, KL(r||Tpost) <= Orpir = V- (urVC)+Apr (Fokker—Planck equation)

Convergence guarantee : For a convex misfit C (or log-concave Tpost), fir — Tpost @S T — 0O.



Probabilistic FWI as gradient flow in probability space

Idea. Gradient flows on probabilities describe how mass is transported to minimize an objective functional.

Gradient flow of the KL divergence with 2-Wasserstein metric

Orpir = =V, KL(r||Tpost) <= Orpir = V- (urVC)+Apr (Fokker—Planck equation)

Convergence guarantee : For a convex misfit C (or log-concave Tpost), fir — Tpost @S T — 0O.

Numerical schemes = sampling algorithms

Particle representation Parametric representation
e Langevin dynamics e Gaussian variational inference
e SVGD e Normalizing flows

In both standard and probabilistic FWI, the dynamics of the flow is determined by the geometry.
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Application to FWI uncertainty quantification



o

c reference benchmark

free surface at z =0 noise-free reference, dense acquisition
0 5000 Seismogram
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2D layer model: m = (v2, v3, va, vs, vg) | . Forward map (acoustic) : reflectivity method (Mallick and Frazer (1987))
vi = 1500 m/s fixed, single Ricker source fy =5 Hz, T = 2.0 sec, 16 receivers, 20 dB SNR
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Reference posterior distribution
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Posterior features
e non-Gaussian, anisotropic
e multi-modal (v, vs marginals)

e data information weakens with depth
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Benchmarking standard methods - impact of initialization

SVGD - piinit = N(mo, X0/2), pinie = N(mo, Xo/6) with 100 particles

5 U3 Uy

— D1

— SVGD 2

6000 2000 4000 600C

1800 2000 2200 2000 3000 4000 2000 4000 6000 2000 4000

KDE marginal density

Number of forward calls : 2 X i X Npartictes — O(10%)
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Benchmarking standard methods - impact of initialization

SVGD - piinit = N(mo, X0/2), pinie = N(mo, Xo/6) with 100 particles

: V3 V3 vy V5
‘ W Reference
| — SVGD1
— svap2

1800 2000 2200 2000 3000 4000 2000 4000 6000 2000 4000 6000 2000 4000 600C

KDE marginal density

Number of forward calls : 2 X i X Npartictes — O(10%)
Gaussian VI and Hessian at MAP - pinie = N(mo, X0/2), pinie = N(mo, X0/6)

; vy V3 ST Vs Vg

5 ——- Hess. MAP i

1;’ Gauss VI 1 !

2 —— Gauss VI 2 y

| \J N

&) — >
= 1800 2000 2200 2000 3000 4000 2000 4000 6000 2000 4000 6000 2000 4000 600C

Number of forward calls :
o Gauss VI : 2 X e X Nousd — O(103) Standard schemes struggle f)n -complex posteriors,
— cycle-skipping

e Hessian MAP — 0(10%) 1



Towards large scale UQ on field data

How to scale to larger problems ? EnKF as a Gaussian variational update with dimension reduction

Gaussian variational inference Ensemble Kalman Filter (EnKF) - Evensen (2003)
min KL (k| mpest), with pi(m) ~ N(m, C) p(m) = L SN 5(m— m®)

+ mean update m only - N particles updates m"), j = {1,..., N}

- full covariance matrix + low-rank covariance from particles

- 1st order scheme + 2nd order, Gauss-Newton scheme



Towards large scale UQ on field data

How to scale to larger problems ? EnKF as a Gaussian variational update with dimension reduction

Gaussian variational inference

min KL(4||mpost), with pi(m) ~ N(m, C)

Jr

mean update m only
full covariance matrix

1st order scheme

Application to field data - Hoffmann et al. (2024)

4-component Ocean Bottom Cable device

VTI acoustic model, pressure component for the
inversion : V, inversion only

2048 reciprocal sources, 2.5-5Hz frequency band

Sequential Bayes updates by batch of 16 shots
— 3 (-BFGS + 1 EnKF update for each batch

Ensemble Kalman Filter (EnKF) - Evensen (2003)
p(m) = 5 30, 8(m — m)
- N particles updates m"), i = {1,..., N}

+ low-rank covariance from particles

+ 2nd order, Gauss-Newton scheme
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scale UQ on field data

Initial ensemble in a local valley to avoid cycle-skipping, N = 50 particles enough for Gaussian uncertainty

distribution
average V,, (m/s) variance (m?/s?) . initial final
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EnKF-FWI

: reasonably cheap UQ where richer inference methods are (yet) too expensive




Conclusion

Summary

e Uncertainty quantification (UQ) for FWI requires sampling a non-Gaussian posterior
e Gradient flow theory provides a rigorous framework to understand and design UQ algorithms

e The framework guides novel physics-aware algorithms with convergence guarantees
— Gaussian mixture VI, EnKF without collapse, ¢-BFGS like preconditioning, ...

e Scaling to large problems requires dimension reduction and careful preconditioning




Conclusion

Summary
e Uncertainty quantification (UQ) for FWI requires sampling a non-Gaussian posterior
e Gradient flow theory provides a rigorous framework to understand and design UQ algorithms

e The framework guides novel physics-aware algorithms with convergence guarantees
— Gaussian mixture VI, EnKF without collapse, ¢-BFGS like preconditioning, ...

e Scaling to large problems requires dimension reduction and careful preconditioning

Takeaways

e UQ is fundamentally about moving probability mass wisely

e Gradient flows connects sampling algorithms with the physics and difficulties of FWI
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