Solving large scale flow acoustics time-harmonic problems in a HPC framework using domain decomposition

> Philippe Marchner Siemens Digital Industries Software philippe.marchner@siemens.com

> > Rencontre JCJC ondes November 29th, 2022

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

1. Introduction

Industrial context

Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

Industrial context

Long term perspective

Provide a cheap flow acoustics solver: noise from bodies in motion

Computational workflow

- 1. compute mean flow (e.g. RANS)
- 2. extract acoustic sources
- 3. compute sound propagation
- 4. find solutions (new material)

Objective

Provide a "*ready-to-use*" sound propagation simulation tool

- suitable to modern computer architectures
- applicable to large, complex industrial problems
- \rightarrow to be used in optimization

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

Physical models for flow acoustics

We focus on the time-harmonic regime (rotating machines)

Hybrid model - solve mean flow and acoustic perturbations separately

- Linearized Euler Equations provide a precise physical model, but are costly and exhibit hydrodynamic instabilities
- We rather focus on a self-adjoint, scalar operator : Linearized Potential/Pierce Operator [Spieser, Bailly 2020]

A self-adjoint flow acoustic operator

PDE for the acoustic velocity potential $\mathbf{v} = \nabla u$ and compact source f

Linearized Potential Equation (LPE)

$$\rho_0(\boldsymbol{x})\frac{\mathrm{D}_0}{\mathrm{D}t}\left(\frac{1}{c_0(\boldsymbol{x})^2}\frac{\mathrm{D}_0\boldsymbol{u}}{\mathrm{D}t}\right) - \nabla\cdot\left(\rho_0(\boldsymbol{x})\nabla\boldsymbol{u}\right) = \boldsymbol{f}, \quad \frac{\mathrm{D}_0}{\mathrm{D}t} = \mathrm{i}\boldsymbol{\omega} + \boldsymbol{v}_0(\boldsymbol{x})\cdot\nabla$$

Helmholtz-type problem with convection and heterogeneities

Mathematical difficulties

- oscillatory, non-local solution
- complex valued, strongly indefinite with ω
- unbounded domain
- local convection effects

Does not converge with classical iterative methods [*Ernst, Gander 2012*]

 \rightarrow direct solver

Point source in a uniform flow

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

3D example: acoustic radiation of a turbofan engine

A typical problem: Compute the tonal radiation of an engine intake Current solver: direct solver (MUMPS) + p-FEM approximation

 $\omega_{\rm bpf}$, $N_{\rm dofs} = 10$ M, nnz = 730 M Direct solver \rightarrow 740 Gb of RAM

 \downarrow increase ω ?

 $2 \times \omega_{bpf}$, $N_{dofs} = 73$ M, nnz = 5B Direct solver ≈ 6 Tb of RAM ...

 $\mathcal{O}(\omega^3)$ scaling in memory & time ... Goal: compute tones up to 5 bpf !

Turbofan exhaust radiation

Turbofan exhaust: fan noise through dual-stream jet flow Mean flow obtained through RANS computation ($\rho_0, c_0, \mathbf{v}_0$)

Figure: Real part of the acoustic pressure at 7497 Hz for various incident modes, from [*Hamiche et al. 2019*]

Memory limitation from \approx 20-25 wavelengths in 3D

Objective

Industrial objective

Provide a (scalable) parallel solver to increase the upper frequency limit

Available tools at Siemens

Discretization

- high-order finite elements

 → reduce discretization error
 (interpolation & dispersion)
- *a-priori* error indicator adaptive order [*Bériot et al. 2016*]
- efficient frequency sweep

Parallelization

- algebraic parallelization is hard for Helmholtz problems
- instead, "divide and conquer" at the continuous (PDE) level → domain decomposition
- lots of approaches, but common framework [*Gander, Zhang 2019*]

Selected solution

Extend the non-overlapping Schwarz domain decomposition framework

[Boubendir et al. 2012]

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method

Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

Non-overlapping Schwarz method

Partition $\Omega = \bigcup_{i=1}^{N_{dom}} \Omega_i$ into subdomains, and solve the BVPs

Non-overlapping optimal Schwarz formulation

$$\begin{pmatrix} \rho_0 \frac{D_0}{Dt} \left(\frac{1}{c_0^2} \frac{D_0 u_i}{Dt} \right) - \nabla \cdot (\rho_0 \nabla u_i) = 0 \text{ in } \Omega_i \text{ (volume PDE)} \\ \rho_0 \left(1 - M_n^2 \right) \left(\partial_{n_i} u_i + i \widetilde{\Lambda}^+ u_i \right) = 0, \text{ on } \Gamma_i^\infty \text{ (radiation condition)} \\ \rho_0 \left(1 - M_n^2 \right) \left(\partial_{n_i} u_i + i \mathcal{S}_i u_i \right) = g_{ij}, \text{ on } \Sigma_{ij} \text{ (interface condition)}$$

Introduce the interface coupling on Σ_{ii}

$$g_{ij} = \rho_0 \left(1 - M_n^2 \right) \left(-\partial_{n_j} u_j + \imath S_i u_j \right) \\ = -g_{ji} + \imath \rho_0 \left(1 - M_n^2 \right) \left(S_i + S_j \right) u_j := \mathcal{T}_{ji} g_{ji} + b_{ji}$$

Rewrite the coupling as a linear system for $\mathbf{g} = (g_{ij}, g_{ji})^T$ over all Σ_{ij}

$$\underbrace{(\mathcal{I} - \mathcal{A})}_{\text{iteration matrix interface unknowns}} = \underbrace{\mathbf{b}}_{\text{physical sources}}, \quad \mathcal{A} = \begin{pmatrix} 0 & \mathcal{T}_{ji} \\ \mathcal{T}_{ij} & 0 \end{pmatrix}$$
$$\mathcal{T}_{ij} \text{ and } \mathcal{T}_{ji} \text{ are iteration operators on } \Sigma_{ij}$$

15 / 46

November 29, 2022

High-level algorithmic procedure

Surface iteration operators

$$\mathcal{T}_{ji} = rac{\mathcal{S}_i - \widetilde{\Lambda}^+}{\mathcal{S}_j + \widetilde{\Lambda}^+}, \quad \mathcal{T}_{ij} = rac{\mathcal{S}_j + \widetilde{\Lambda}^-}{\mathcal{S}_i - \widetilde{\Lambda}^-}$$

Iteration matrix eigenvalues: $\lambda_{(I-A)} = 1 \pm \sqrt{\mathcal{T}_{ji}\mathcal{T}_{ij}}$ If we choose $S_i = \tilde{\Lambda}^+$ and $S_j = -\tilde{\Lambda}^-$, we have a direct method

Parallel iterative algorithm for the process iDo in Ω_i at iteration (n + 1), $\forall j \in D_i$

- 1. given $g_{ij}^{(n)}$, solve $u_i^{(n+1)}$ in Ω_i ,
- 2. update the (n + 1) neighbourhood data through $g_{ji}^{(n+1)} = -g_{ij}^{(n)} + i\rho_0 \left(1 M_n^2\right) (S_i + S_j) u_i^{(n+1)}$ on Σ_{ij} ,

High-level algorithmic procedure

Surface iteration operators

$$\mathcal{T}_{ji} = rac{\mathcal{S}_i - \widetilde{\Lambda}^+}{\mathcal{S}_j + \widetilde{\Lambda}^+}, \quad \mathcal{T}_{ij} = rac{\mathcal{S}_j + \widetilde{\Lambda}^-}{\mathcal{S}_i - \widetilde{\Lambda}^-}$$

Iteration matrix eigenvalues: $\lambda_{(I-A)} = 1 \pm \sqrt{\mathcal{T}_{ji}\mathcal{T}_{ij}}$ If we choose $S_i = \tilde{\Lambda}^+$ and $S_j = -\tilde{\Lambda}^-$, we have a direct method

Parallel iterative algorithm for the process iDo in Ω_i at iteration (n + 1), $\forall j \in D_i$

- 1. given $g_{ij}^{(n)}$, solve $u_i^{(n+1)}$ in Ω_i ,
- 2. update the (n + 1) neighbourhood data through $g_{ji}^{(n+1)} = -g_{ij}^{(n)} + i\rho_0 \left(1 M_n^2\right) (S_i + S_j) u_i^{(n+1)}$ on Σ_{ij} ,

Problem: $(\tilde{\Lambda}^+, -\tilde{\Lambda}^-)$ are **non-local** DtN maps for the PDE Idea: design **sparse approximations** $S_i \approx \tilde{\Lambda}^+$ and $S_j \approx -\tilde{\Lambda}^ \Leftrightarrow$ approximate Schur complements at the algebraic level

Illustration of the algorithm

Iterative solver for the interface problem $(\mathcal{I}-\mathcal{A})\mathbf{g}=\mathbf{b}$

Iterate until convergence

- 1. Solve the volume subproblems u_i with boundary conditions
- 2. update the interfaces unknowns $\boldsymbol{g} = (g_{ij}, g_{ji})$ through transmission conditions $(\mathcal{S}_i, \mathcal{S}_j)$

- Convergence ? [Desprès 1991]
- How to choose the operators (S_i, S_j) ? → [Gander et al. 2002], numerous works...

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

Approximation of the DtN map

We follow the idea to find local approximations of the DtN maps $(\widetilde{\Lambda}^+, -\widetilde{\Lambda}^-)$ for outgoing waves and use them as transmission conditions

There are several ways to do so:

- Absorbing boundary condition (ABC),
- Infinite element (IE),
- Perfectly Matched Layer (PML),
- etc.

In this talk we focus on absorbing boundary condition.

- 1. it's a boundary treatment: easy set up of the surfacic problem in a non-overlapping context
- 2. we need to account for the entire frequency spectrum (Fourier analysis)

Remark: the extension of ABC, PML and IE techniques for flow acoustics is not straightforward !

 \rightarrow we focus on ABC construction for a uniform axial mean flow

DtN map for flow acoustics

Idea: Find an exact form of the DtN map for a half-space problem

DtN operator on Σ

$$\widetilde{\Lambda^{+}}: \begin{cases} H^{1/2}(\Sigma) \to H^{-1/2}(\Sigma) \\ u_{|\Sigma} \mapsto \partial_{\boldsymbol{n}} u_{|\Sigma} = -i\widetilde{\Lambda^{+}} u_{|\Sigma} \end{cases}$$

General case: use pseudo-differential calculus [Engquist and Majda 1977, 1979] [Antoine et al. 1999] $\bigwedge^{u} \tau \qquad (y,\xi)$

Example: 2D convected Helmholtz operator ($|M_x| < 1, M_y = 0$)

$$\mathcal{L} = (1 - M_x^2)\partial_x^2 + \partial_y^2 - 2\imath\omega M_x\partial_x + \omega^2$$

Question: can we factorize the operator ${\cal L}$ on Σ ?

$$\mathcal{L} \underset{?}{=} \left(\partial_x + \imath \widetilde{\Lambda^-}\right) \left(\partial_x + \imath \widetilde{\Lambda^+}\right) \quad \text{on } \Sigma$$

Waveguide case

For the half-space problem with uniform flow $|M_x| < 1$, we have an exact solution:

$$\widetilde{\Lambda}^{\pm} = \omega rac{-M_{x} \pm \sqrt{1+Z}}{1-M_{x}^{2}}, \quad Z = \left(1-M_{x}^{2}\right) rac{\Delta_{\Sigma}}{\omega^{2}},$$

Localization of $\tilde{\Lambda}^+$: high-frequency approx. for $\sqrt{1+Z}$, $(\omega \to +\infty)$. However we want an approximation for all the Fourier modes of Δ_{Σ} \rightarrow rotate branch-cut and use complex valued approximations of

$$f_{\alpha}(Z) = e^{\imath \alpha/2} \sqrt{1+\hat{Z}}, \quad \hat{Z} = [e^{-\imath \alpha}(1+Z)-1],$$

Taylor approximation (N, α)

$$f_{lpha}(Z) pprox e^{\imath lpha/2} \sum_{\ell=0}^{N} {1/2 \choose \ell} \left(e^{-\imath lpha} (1+Z) - 1
ight)^{\ell}$$

Padé approximation (N, α)

$$f_{lpha}(Z) pprox \mathcal{K}_0(oldsymbollpha) + \sum_{\ell=1}^N \mathcal{A}_\ell(oldsymbollpha) Z (1 + \mathcal{B}_\ell(oldsymbollpha) Z)^{-1}$$

Square-root function approximation

Let us plot f_{lpha} and some approximations along the real line $\Im(Z)=0$

Figure: Absolute error along the real line with Padé approximants: N = 1, N = 2, N = 8

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation

3. Software implementation in a HPC frameworl

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

Domain decomposition in a straight waveguide

Straight waveguide with uniform flow $|M_x| < 1$: the convergence radius has the explicit form:

$$\rho(\xi) = \left| \sqrt{\mathcal{T}_{ji}\mathcal{T}_{ij}} \right| = \left| \frac{(f - f_{\alpha})(-2M_{x} + f - f_{\alpha})}{(-2M_{x} + f + f_{\alpha})(f + f_{\alpha})} \right|$$

where $f = \sqrt{1 + (1 - M_{\chi}^2)(\xi/\omega)^2}$, f_{α} is the square-root approximation and ξ is the Fourier mode for Δ_{Σ}

Convergence radius

Figure: Convergence radius for various approximations, $\alpha = -\pi/2, \omega = 30$. For $M_x = 0.8$ and $\xi \in [30, 50]$, the wave has negative phase velocity.

Remarks:

- The Taylor approximations can not ensure ho < 1 for all modes,
- In practice, only Padé approximations converge with a Jacobi solver,
- The Taylor 1 approximation results in a 2nd order surface operator, and is straightforward to integrate in an existing code

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation

Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

High-order FEM implementation

Discretization on a conformal, high-order H^1 -basis for an arbitrary flow

Weak formulation for the linearized potential equation

$$\begin{aligned} \forall v \in V \subseteq H^{1}(\Omega), \\ \int_{\Omega} \left[\rho_{0} \nabla u \cdot \overline{\nabla v} - \frac{\rho_{0}}{c_{0}^{2}} \frac{D_{0}u}{Dt} \frac{\overline{D_{0}v}}{Dt} \right] d\Omega + i \int_{\Sigma} \mathcal{G} u \overline{v} \ d\Sigma = \int_{\Omega} f \overline{v} d\Omega \end{aligned}$$

The boundary operator ${\mathcal G}$ takes the same form as in the Helmholtz case

$$\int_{\Sigma} \mathcal{G} u \,\overline{v} \, d\Sigma = \int_{\Sigma} e^{i\alpha/2} \rho_0 k_0 \sqrt{1 + \hat{\mathcal{Z}}} \, u \,\overline{v} \, d\Sigma$$

with $\hat{Z} = e^{-\imath \alpha} \left(1 - 2\imath M_{\tau} \frac{\nabla \Sigma}{k_0} + \left(1 - \mathsf{M}^2 \right) \frac{\Delta \Sigma}{k_0^2} \right) - 1, \ \mathsf{M} = \sqrt{M_n^2 + M_{\tau}^2}, \ k_0 = \omega/c_0$

High-order FEM implementation

Discretization on a conformal, high-order H^1 -basis for an arbitrary flow

Weak formulation for the linearized potential equation

$$\begin{aligned} \forall v \in V \subseteq H^{1}(\Omega), \\ \int_{\Omega} \left[\rho_{0} \nabla u \cdot \overline{\nabla v} - \frac{\rho_{0}}{c_{0}^{2}} \frac{D_{0}u}{Dt} \frac{\overline{D_{0}v}}{Dt} \right] d\Omega + i \int_{\Sigma} \mathcal{G} u \overline{v} \ d\Sigma = \int_{\Omega} f \overline{v} d\Omega \end{aligned}$$

The boundary operator ${\mathcal G}$ takes the same form as in the Helmholtz case

$$\int_{\Sigma} \mathcal{G} u \, \overline{v} \, d\Sigma = \int_{\Sigma} e^{i \alpha/2} \rho_0 k_0 \sqrt{1 + \hat{Z}} \, u \, \overline{v} \, d\Sigma$$

with $\hat{Z} = e^{-\imath \alpha} \left(1 - 2\imath M_{\tau} \frac{\nabla_{\Sigma}}{k_0} + (1 - M^2) \frac{\Delta_{\Sigma}}{k_0^2} \right) - 1, M = \sqrt{M_n^2 + M_{\tau}^2}, k_0 = \omega/c_0$ Example : 2nd order Taylor approximation of the square-root:

$$\begin{split} \int_{\Sigma} \mathcal{G} u \,\overline{v} \, d\Sigma &= \cos(\alpha/2) \int_{\Sigma} \rho_0 k_0 \, u \,\overline{v} \, d\Sigma \\ &+ e^{-i\alpha/2} \left(\int_{\Sigma} \rho_0 M_\tau \nabla_{\Sigma} u \,\overline{v} \, d\Sigma - \int_{\Sigma} \rho_0 \frac{(1-\mathsf{M}^2)}{2k_0} \nabla_{\Sigma} u \, \nabla_{\Sigma} \overline{v} \, d\Sigma \right) \end{split}$$

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation

Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

Extending transmission conditions

Such DtN approximations can be extended to

- regular convex shaped boundaries
- non-uniform flows, density and speed of sound

The methodology is to expand the DtN operator into its **symbols**: the leading term encodes uniform flow and straight boundary.

Convergence difficulties are expected in the inverse upstream regime for the 2nd order Taylor based transmission condition \rightarrow try instead a coercive 2nd order approximation ?

The extension to Pierce operator is direct: same variational formulation $(\rho_0^{-1}(x) \leftrightarrow \rho_0(x))$: encodes richer physics (more complex mean flows)

Towards realistic cases

Automatic partitioning

- Cross-points

 → harder to design ABCs
- Good load balancing between subproblems
- Shorter connectivity graph $\mathcal{O}(\sqrt{N_{\text{dom}}})$

We choose Taylor 1, $\alpha = -\pi/2$ for arbitrary decomposition

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

Introduction

<u>Goal</u>: propose a proof of concept of a DDM solver with industrial constraints:

- minimize the implementation overhead from a given FEM code,
- parallelism must be hidden to the user,
- switch to a parallel solver when necessary (frequency criterion),
- can be tested/validated easily,

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework Implementation framework

Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

Implementation framework

C++ distributed memory implementation

- Gmsh: mesh generation, partitioning (METIS)
- GmshFEM: Finite element library, subdomain solver (MUMPS)
- GmshDDM: Interface problem, communication (MPI), iterative solver

First, create a mesh partition that minimizes the size of the interface problem.

Domain decomposition algorithm for the *i*-th process linked to the subdomain Ω_i

- 1. Initialization: read mesh, map mean flow, initialize interface problem
- 2. Assembly: assemble the finite element matrix,
- 3. Factorization: call the external MUMPS solver via PETSc and run a sparse LU decomposition for the volume subproblem,
- 4. Surface Assembly: assemble the surface interface problem,
- 5. Iterative solver: enter the iterative solver (PETSc GMRES) for the interface problem

 $(\mathcal{I} - \mathcal{A})g = f$. Do until convergence:

- 5.1 receive g_{ij} and send the updated data g_{ji} to the connected subdomains,
- 5.2 compute the local matrix-vector product,
- 6. Post-process: save the solution.

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework

Scalability assessment

The 3D turbofan engine benchmark Reaching high frequency

Weak scalability assessment - Helmholtz case

Evaluate time and memory usage: assembly, factorization, cost per iteration. Weak scalability up to 700M dofs - 1024 MPI processes: \approx 80% efficiency We assign 1 MPI process per subdomain

Min/max peak memory usage over all MPIs.

Cumulated wall time.

- pprox 1M dofs per subdomain leads a reasonable factorization cost
- each process takes advantage of multi-threading
- load balancing is affected by the number of subdomains

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment

The 3D turbofan engine benchmark

Reaching high frequency

The boundary value problem

Given a flight configuration (mean flow), predict the radiated noise from the fan, at multiples of the blade passing frequency $\omega_{bpf}/(2\pi) = 1300 \text{ Hz}$

The mean flow is pre-computed (non-linear Poisson) and mapped on the acoustic mesh

Physical interpretation

The problem models the **blade passing frequency** (bpf) of the fan: links the annular mode numbers (m, n) with the input frequency ω_{bpf} .

Mach number $M = \|\mathbf{v}_0\| / c_0$ for a typical mean flow.

Sound pressure level for an engine intake from a static engine test.

Computational domain: 3D cylinder (radius 2.5m, length 3.4m).

- $n \times bpf \leftrightarrow n \times 25$ wavelengths in the domain
- mesh size and p-FEM order are fixed to have at least 5 dofs per λ

The acoustic lining is defined by a complex-valued impedance $\mathcal{Z}(\omega)$, which can be modeled by a boundary operator on Γ_{ℓ}

$$\begin{split} &\int_{\Gamma_{\ell}} -\rho_0 \, \frac{\partial u}{\partial \mathbf{n}_{\ell}} \overline{\mathbf{v}} \, d\Gamma_{\ell} \\ &= \int_{\Gamma_{\ell}} \frac{\rho_0}{\mathcal{Z}(\omega) c_0} \left(\mathrm{i} \omega u \overline{\mathbf{v}} + (\mathbf{v}_0 \cdot \nabla_{\Gamma} u) \, \overline{\mathbf{v}} - u \, (\mathbf{v}_0 \cdot \nabla_{\Gamma} \overline{\mathbf{v}}) - \frac{1}{\mathrm{i} \omega} (\mathbf{v}_0 \cdot \nabla_{\Gamma} u) \, (\mathbf{v}_0 \cdot \nabla_{\Gamma} \overline{\mathbf{v}}) \right) \, d\Gamma_{\ell}. \end{split}$$

It results in broader modal content of the numerical solution (evanescent modes, reflected waves, etc.).

The implementation has been validated by a mode-matching method

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

Reaching high frequency

1 bpf: \approx 10M dofs \rightarrow 740 Gb RAM direct solver (25 λ) 2 bpf: \approx 70M dofs \rightarrow 6 Tb RAM direct solver (50 λ)

Nic5 Uliège cluster - (AMD Epyc Rome 7542 CPUs 2.9 GHz)

			peak memory			
64×1	73 M	5 B	26 Gb	45min	4h30	535

Run at 2bpf with 64 subdomains (64 MPI) and acoustic lining. p-FEM= 4

IDRIS Jean-Zay CPU partition – 256 nodes (2 x 20 Intel Cascade Lake 6248 2,5Ghz)

Cores	Total dofs	nnz	peak memory	pre-pro	GMRES	Iterations
512×20	565M	85B	70Gb	24min	8h20	3000

Run at 4bpf with 512 subdomains (512 MPI) and acoustic lining. p-FEM= 6

GMRES stopped after 3000 Iterations at a residual $r_I = 2.7 \times 10^{-6}$

Reaching high frequency

IDRIS Jean-Zay CPU partition – 512 nodes (2 \times 20 Intel Cascade Lake 6248 2,5Ghz)

Cores	Total dofs	nnz	peak memory	pre-pro	GMRES	Iterations
1024×20	1.1B	167B	70Gb	24min	6h10	2253

Run at 5bpf with 1024 subdomains (1024 MPI) and acoustic lining. p-FEM= 6

125 wavelengths in the domain - validation with the axisymmetric case

Mode (48, 1) without liner

Mode (48, 1) with acoustic liner

Visualization at 5 bpf

Figure: Real part of the acoustic velocity potential for the mode (48, 1) at 5 bpf.

1. Introduction

Industrial context Flow acoustics Applications

2. Iterative domain decomposition approach

Non-overlapping Schwarz method Building transmission conditions in the presence of flow Domain decomposition in a straight waveguide Variational formulation Towards advanced test cases

3. Software implementation in a HPC framework

Implementation framework Scalability assessment The 3D turbofan engine benchmark Reaching high frequency

We proposed a scalable high frequency distributed memory solver for realistic flow acoustics radiation problems.

- the number of iterations depends of the frequency, mesh size and N_{dom} : a coarse space would be highly beneficial
- transmission conditions are PDE based: hard to extend to Maxwell, elastic waves, etc.
- cross-point treatment is hard with mean flow anisotropy
- subdomain factorization cost could be reduced with MUMPS block low rank feature
- the next step is the extension to Pierce equation (turbofan exhaust)