Local absorbing boundary conditions for heterogeneous and convected time-harmonic acoustic problems

Philippe Marchner

Siemens Industry Software University of Lorraine, University of Liège, philippe.marchner@siemens.com

Conference on Mathematics of Wave Phenomena Karlsruhe, 14-18 February 2022

X. Antoine

C. Geuzaine

H. Bériot

Motivation

Microlocal analysis

Absorbing boundary conditions on academic examples Longitudinal heterogeneous waveguide Transverse heterogeneous waveguide Convected Helmholtz operator

Motivation

Microlocal analysis

Absorbing boundary conditions on academic examples Longitudinal heterogeneous waveguide Transverse heterogeneous waveguide Convected Helmholtz operator

Motivation

Non-reflecting boundary conditions for time-harmonic problems

ightarrow Well-developed in the Helmholtz case (ABCs, PMLs, Infinite elements, etc.)

Industrial situation - flow acoustics

- heterogeneous medium spatially varying density ρ₀(x) and speed of sound c₀(x)
- convection spatially varying velocity vector field v₀(x)

Goals

- 1. improve accuracy of ABCs for such problems [Marchner et al., to appear in SIAP, 2022],
- 2. use them as transmission conditions for non-overlapping Schwarz domain decomposition
 - \rightarrow parallel time-harmonic solver [Lieu et al., CMAME, 2020]

Motivation

Microlocal analysis

Absorbing boundary conditions on academic examples Longitudinal heterogeneous waveguide Transverse heterogeneous waveguide Convected Helmholtz operator

Microlocal analysis - DtN operator

ABCs: find local approximations of the Dirichlet-to-Neumann map

$$\widetilde{\Lambda^{+}}: \begin{cases} H^{1/2}(\Sigma) \to H^{-1/2}(\Sigma) \\ u_{|\Sigma} \mapsto \widetilde{\Lambda^{+}} u_{|\Sigma} = \partial_{\mathbf{n}} u_{|\Sigma} \end{cases}, \end{cases}$$

through pseudo-differential calculus [*Engquist and Majda 1977 & 1979*]

2D Helmholtz half-space problem with heterogeneous coefficients

$$\mathcal{L} = \rho_0^{-1} \partial_x (\rho_0 \partial_x) + \rho_0^{-1} \partial_y (\rho_0 \partial_y) + \omega^2 c_0^{-2}$$

$$\approx \left(\partial_x - i \sqrt{\omega^2 c_0^{-2} + \rho_0^{-1} \partial_y (\rho_0 \partial_y)} \right) \left(\partial_x + i \sqrt{\omega^2 c_0^{-2} + \rho_0^{-1} \partial_y (\rho_0 \partial_y)} \right)$$

We cannot formally factorize \mathcal{L} when $\partial_x(\rho_0) \neq 0$ or $\partial_x(c_0) \neq 0$

- Compute instead the symbol λ^+ of Λ^+
- ightarrow work on polynomials in ξ with pseudo-differential algebraic rules

Microlocal analysis - symbol expansion

Nirenberg's factorization theorem: there exists $(\Lambda^+, \Lambda^-) \in OPS^1$

$$\mathcal{L} = (\partial_x + i\Lambda^+) (\partial_x + i\Lambda^-) \mod \mathsf{OPS}^{-\infty}$$
$$= \partial_x^2 + i (\Lambda^+ + \Lambda^-) \partial_x + i \mathrm{Op} \{\partial_x \lambda^+\} - \Lambda^- \Lambda^+ \mod \mathsf{OPS}^{-\infty}.$$

Identify with the Helmholtz operator and get an equation for Λ^+

$$\left(\Lambda^{+}\right)^{2}+i\rho_{0}^{-1}\partial_{x}\left(\rho_{0}\right)\Lambda^{+}+i\operatorname{Op}\left\{\partial_{x}\lambda^{+}\right\}=\omega^{2}c_{0}^{-2}+\rho_{0}^{-1}\partial_{y}\left(\rho_{0}\partial_{y}\right)$$

"high frequency" asymptotic expansion for the total symbol λ^+

$$\lambda^+ \sim \sum_{j=-1}^{\infty} \lambda^+_{-j} = \lambda^+_1 + \lambda^+_0 + \lambda^+_{-1} + \cdots$$
 (classical symbol expansion)

Each λ^+_{-j} is homogeneous of leading order $(\omega/c_0,\xi)^{-j}$

$$\lambda_{1}^{+} = \sqrt{\omega^{2}c_{0}^{-2} - \xi^{2}}, \ \lambda_{0}^{+} = -i\left(\frac{\partial_{x}\left(\rho_{0}\right)}{2\rho_{0}} + \frac{\xi\partial_{y}\left(\rho_{0}\right)}{2\rho_{0}\lambda_{1}^{+}} + \frac{\omega^{2}\partial_{x}\left(c_{0}^{-2}\right)}{4\left(\lambda_{1}^{+}\right)^{2}} + \frac{\xi\omega^{2}\partial_{y}\left(c_{0}^{-2}\right)}{4\left(\lambda_{1}^{+}\right)^{3}}\right)$$

Microlocal regimes

Outgoing propagating waves are characterized by $\Re(\lambda_1^+) > 0$ **Evanescent waves** ? rotate the square root branch-cut [*Milinazzo et al. 1997*]

$$\lambda_1^+ = e^{i\alpha/2} \sqrt{e^{-i\alpha} (\omega^2 c_0^{-2} - \xi^2)}, \ \alpha \in [0, -\pi], \ (+i\omega t \text{ convention})$$

- $\omega c_0^{-1} > |\xi|$, x-positive propagating wave $\rightarrow \alpha = 0$,
- $\omega c_0^{-1} < |\xi|$, x-positive evanescent wave $\rightarrow \alpha = -\pi$,
- $\omega c_0^{-1} = |\xi|$, grazing wave, ill-posed problem

In practice choose $\alpha \in [0, -\pi/2]$

 \rightarrow trade-off to capture both propagative and evanescent part of the spectrum

Approximate DtN operator $\widetilde{\Lambda}^+_M$

$$\partial_{\mathbf{n}} u = -i\Lambda_M^+ u, \quad \Lambda_M^+ = \sum_{j=-1}^{M-2} \operatorname{Op}\left(\lambda_{-j}^+\right)$$

Take the trace on the outgoing boundary Σ to get $\widetilde{\Lambda}^+_M$

Difficulties

- the formal computation of λ^+_{-i} can be involved (PDE dependent),
- the operator ${
 m Op}\left(\lambda^+_{-j}
 ight)$ is in general not unique and still non-local
- limited a priori to smooth variations of ho_0 and c_0

Next step

focus on simplified academic situations

Motivation

Microlocal analysis

Absorbing boundary conditions on academic examples

Longitudinal heterogeneous waveguide Transverse heterogeneous waveguide Convected Helmholtz operator

Motivation

Microlocal analysis

Absorbing boundary conditions on academic examples Longitudinal heterogeneous waveguide

Transverse heterogeneous waveguide Convected Helmholtz operator

Longitudinal heterogeneous waveguide

Single mode propagation in a heterogeneous waveguide: $\rho_0 = 1$, $c_0(x, y) = c_0(x)$

Single mode analytic solution for a linear profile

$$u_{\mathrm{ex}}^{n}(x,y) = \cos\left(k_{y}y\right) \operatorname{Ai}\left(e^{-\frac{2i\pi}{3}}\frac{k_{y}^{2}-\omega^{2}(ax+b)}{(a\omega^{2})^{2/3}}\right), \quad k_{y} = \frac{n\pi}{H}, \quad n \in \mathbb{N}$$

Approximation at the symbol level

 $c_0^{-2}(x) = 5x + 0.1$, L = 1 at fixed frequency $\omega = 30$

Analytic total symbol $\lambda^{+} = -ie^{-\frac{2i\pi}{3}} \left(a\omega^{2}\right)^{1/3} \frac{\operatorname{Ai'}(z)}{\operatorname{Ai}(z)}, \quad z = e^{-\frac{2i\pi}{3}} \frac{\xi^{2} - \omega^{2}(aL+b)}{(a\omega^{2})^{2/3}}$

• singularity in the grazing regime $\xi \approx \omega c_0^{-1}$

Operator representation

Truncate the asymptotic expansion for λ^+

$$\lambda^{+} \approx \lambda_{1}^{+} + \lambda_{0}^{+} = \sqrt{\omega^{2}c_{0}^{-2} - \xi^{2}} - i\frac{\omega^{2}\partial_{x}(c_{0}^{-2})}{4(\omega^{2}c_{0}^{-2} - \xi^{2})}$$

Unique operator representation on $\Gamma_3 := \{x = L, y \in [0, H]\}$

$$\begin{split} \widetilde{\Lambda}_{1}^{+} &= \mathsf{Op}(\lambda_{1}^{+}) = \sqrt{\omega^{2}c_{0}^{-2} + \Delta_{\Gamma}} \\ \widetilde{\Lambda}_{2}^{+} &= \mathsf{Op}(\lambda_{1}^{+} + \lambda_{0}^{+}) = \sqrt{\omega^{2}c_{0}^{-2} + \Delta_{\Gamma}} - i\frac{\omega^{2}\partial_{x}\left(c_{0}^{-2}\right)}{4}\left(\omega^{2}c_{0}^{-2} + \Delta_{\Gamma}\right)^{-1} \end{split}$$

 $\widetilde{\Lambda}_1^+$ and $\widetilde{\Lambda}_2^+$ are still **non-local** \Rightarrow square-root localization

Diagonal Padé approximants of order N in the high frequency limit

$$\sqrt{1+X} \approx K_0 + \sum_{\ell=1}^N A_\ell X (1+B_\ell X)^{-1}, \ X = \Delta_{\Gamma}/(\omega^2 c_0^{-2}) \to 0$$

High-order FEM implementation

Weak formulation: discretization on a conformal high-order H^1 -basis

$$\forall v \in H^{1}(\Omega), \quad \int_{\Omega} \left\{ \nabla u \cdot \nabla \bar{v} - \omega^{2} c_{0}^{-2} u \bar{v} \right\} d\Omega + i \int_{\Gamma_{3}} \widetilde{\Lambda}_{2}^{+} u \bar{v} d\Gamma = \int_{\Gamma_{1}} g \bar{v} d\Gamma$$

$$\int_{\Gamma_3} \widetilde{\Lambda}_2^+ u \overline{v} \, d\Gamma = \int_{\Gamma_3} \omega c_0^{-1} \underbrace{\sqrt{1+X}}_{\approx \kappa_0 + \sum_{\ell=1}^N A_\ell X (1+B_\ell X)^{-1}} u \overline{v} \, d\Gamma - i \int_{\Gamma_3} \frac{\partial_x \left(c_0^{-2}\right)}{4c_0^{-2}} (1+X)^{-1} u \overline{v} \, d\Gamma$$

Introduce auxiliary fields $\varphi_{\ell} = (1 + B_{\ell}X)^{-1}u$ and $\psi = (1 + X)^{-1}u$

Sparse discretization of inverse operators \Rightarrow Augmented system of N+1 surfacic equations

$$\int_{\Gamma_{3}} (1 + B_{\ell}X) \varphi_{\ell} \overline{\nu}_{\ell} \, d\Gamma = \int_{\Gamma_{3}} u \overline{\nu}_{\ell} \, d\Gamma$$
$$\int_{\Gamma_{3}} (1 + X) \psi \overline{\mu} \, d\Gamma = \int_{\Gamma_{3}} u \overline{\mu} \, d\Gamma$$

Numerical results

ABC^{N,α}: Local Padé approximation of $\widetilde{\Lambda}^+_M$ with rotation branch-cut α Relative L²-error (%)

use the derivative of $c_0 \Rightarrow$ more accurate ABC: $ABC_2^{N+1,\alpha} > ABC_1^{N,\alpha}$

Gain of \approx two order of magnitude Precision limited by the DtN symbol truncation

Motivation

Microlocal analysis

Absorbing boundary conditions on academic examples Longitudinal heterogeneous waveguide Transverse heterogeneous waveguide Convected Helmholtz operator

Transverse heterogeneous waveguide

Spatial variation transverse to the boundary: $c_0(y)$, $\rho_0(y)$

$$\partial_x^2 u + \rho_0^{-1} \partial_y \left(\rho_0 \partial_y \right) u + \omega^2 c_0^{-2} u = 0$$

Formal operator factorization for outgoing waves

$$\Lambda_{S} = \sqrt{\omega^{2} c_{0}^{-2} + \rho_{0}^{-1} \nabla_{\Gamma} \left(\rho_{0} \nabla_{\Gamma}\right)}$$

Microlocal justification - total symbol of Λ_S

$$\lambda_{S}^{2} = \omega^{2} c_{0}^{-2} - \xi^{2} - i \rho_{0}^{-1} \partial_{y}(\rho_{0}) \xi$$

Classical symbol asymptotic expansion

$$\lambda_{1,S} = \sqrt{\omega^2 c_0^{-2} - \xi^2}, \ \lambda_{0,S} = -i\xi \left(\frac{\partial_y \left(\rho_0\right)}{2\rho_0 \lambda_{1,S}} + \frac{\omega^2 \partial_y \left(c_0^{-2}\right)}{4\left(\lambda_{1,S}\right)^3}\right), \ \lambda_{-1,S} = \cdots$$

It exactly matches the total DtN symbol λ^+

$$\operatorname{Op}(\lambda^+) = \Lambda_{\mathcal{S}} \mod \operatorname{OPS}^{-\infty}$$

Square-root approximations

Example: Gaussian speed of sound profile: $c_0(y)$, $\rho_0 = 1$, $k_0 = \omega c_0^{-1}$

Operator choices for local square-root approximation

$$\Lambda_{\omega} = \omega \sqrt{1 + \left[\left(c_0^{-2} - 1 \right) + \frac{\Delta_{\Gamma}}{\omega^2} \right]}, \quad \Lambda_{k_0} = k_0 \sqrt{1 + \frac{\Delta_{\Gamma}}{k_0^2}}$$

 $\mathsf{ABC}^{\mathsf{N},\alpha}_\omega$ seems increasingly accurate except for grazing modes

Discontinuous speed of sound profile

Layered waveguide:
$$c_0(y) = \begin{cases} 1/4, & y \in [H/2 - \delta, H/2 + \delta] \\ 1, & \text{elsewhere} \end{cases}$$
, $\delta = H/4$

Limitations

- grazing modes
- can require a large number of auxiliary fields

Motivation

Microlocal analysis

Absorbing boundary conditions on academic examples

Longitudinal heterogeneous waveguide Transverse heterogeneous waveguide Convected Helmholtz operator

Convected Helmholtz operator

Wave convection by a steady subsonic mean flow M < 1

$$\mathcal{L}(\mathbf{x},\partial_{\mathbf{x}},\omega) = \frac{D_0}{Dt} \left(\frac{1}{c_0^2} \frac{D_0}{Dt}\right) - \rho_0^{-1} \nabla \cdot (\rho_0 \nabla), \quad \frac{D_0}{Dt} = i\omega + \mathbf{v}_0 \cdot \nabla$$

Principal symbol (half-space), $M_x = v_{0,x}/c_0$, $M_y = v_{0,y}/c_0$, $k_0 = \omega/c_0$

$$\lambda_{1}^{+} = \frac{1}{1 - M_{x}^{2}} \left[-M_{x} \left(k_{0} - \xi M_{y} \right) + \sqrt{k_{0}^{2} - 2k_{0}M_{y}\xi - (1 - M^{2})\xi^{2}} \right]$$

Tangent plane approximation, $M_n = \mathbf{v}_0 \cdot \mathbf{n}/c_0, M_\tau = \mathbf{v}_0 \cdot \boldsymbol{\tau}/c_0$

$$\begin{split} \widetilde{\Lambda}_{1}^{+} &= \operatorname{Op}(\lambda_{1}^{+}) = \frac{k_{0}}{1 - M_{n}^{2}} \left(-M_{n} + iM_{n}M_{\tau} \frac{\nabla_{\Gamma}}{k_{0}} + \sqrt{1 + X} \right), \\ X &= -2iM_{\tau} \frac{\nabla_{\Gamma}}{k_{0}} + \left(1 - M^{2}\right) \frac{\Delta_{\Gamma}}{k_{0}^{2}}, \quad M = \left\| \mathbf{v}_{0} \right\| / c_{0} \end{split}$$

Point source convection in free field

Complex Padé approximants of $\sqrt{1+X}$ for $\tilde{\Lambda}_1^+ \Rightarrow ABC_1^{N,\alpha}$ Complex Taylor approximants $\Rightarrow ABC_1^{T0,\alpha}$ and $ABC_1^{T2,\alpha}$

Attempt to incorporate curvature effects from λ_0^+ (circle of radius R)

$$ABC_2 = ABC_1 + (1 - M^2)/(2R)$$

 $\mathsf{ABC}_1^{N,lpha}$ is robust for high Mach numbers - wavelength ratio (1+M)/(1-M)

Motivation

Microlocal analysis

Absorbing boundary conditions on academic examples Longitudinal heterogeneous waveguide Transverse heterogeneous waveguide Convected Helmholtz operator

Domain decomposition in a nutshell

Domain partition:
$$\Omega = \bigcup_{i=0}^{N_{dom}-1} \Omega_i, \ \Sigma_{ij} = \overline{\partial \Omega_i \bigcap \partial \Omega_j}, \ j \neq i$$

$$\begin{array}{c} & & \\ & &$$

Parallel iterative (e.g. GMRES) solver for $\mathcal{A}\mathbf{g} = \mathbf{f} \text{ on } \Sigma \left(\partial_{n_i} u_i + i \mathcal{S}_i u_i = g_{ij} \right)$ Do at iteration (*n*)

- 1. Given $g_{ii}^{(n)}$, solve by a direct method $u_i^{(n)}$ in Ω_i ,
- 2. Update the (n + 1) interface unknowns on Σ_{ij} thanks to $g_{ji}^{(n+1)} = -g_{ij}^{(n)} + i(S_i + S_j)u_i^{(n+1)}$

If we choose $S_i = \widetilde{\Lambda}^+$ and $S_j = \widetilde{\Lambda}^-$, we converge in $(N_{dom} - 1)$ iterations

Illustration for a Gaussian waveguide

ABCs for S_i and S_j : propagating, evanescent and grazing modes Gaussian waveguide: $c_0(y) = 1.25 \left(1 - 0.4e^{-32(y-H/2)^2}\right), \rho_0(y) = c_0^2(y)$

$$\begin{array}{c|c|c|c|c|c|c|c|c|}\hline & \mathcal{S}_i & \mathsf{ABC}_{k_0}^{\mathsf{T0},-\pi/4} & \mathsf{ABC}_{k_0}^{\mathsf{T2},-\pi/4} & \mathsf{ABC}_{k_0}^{\mathsf{4(8)},-\pi/4} & \mathsf{ABC}_{\omega}^{\mathsf{4(8)},-\pi/4} \\\hline & \mathsf{It} \ (r_l = 10^{-6}) & 110 & 73 & 41 \ (\mathsf{41}) & 19 \ (\mathsf{7}) \\\hline \end{array}$$

Conclusion

ABCs

- microlocal based ABCs for some heterogeneous and convected Helmholtz problems
- the extension to more complex situations is challenging: corners, combine different variations, curved boundaries, etc.
- Non-overlapping DDM
 - improved DDM convergence with quasi-local operators for simple shaped interfaces

Conclusion

ABCs

- microlocal based ABCs for some heterogeneous and convected Helmholtz problems
- the extension to more complex situations is challenging: corners, combine different variations, curved boundaries, etc.
- Non-overlapping DDM
 - improved DDM convergence with quasi-local operators for simple shaped interfaces

Thank you ! Questions ?