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Industrial context

Long term perspective

Predict noise from bodies in motion for the transport industry

Computational (aero)acoustics

1. analyze & extract sources

2. understand sound propagation

3. find solutions (new material or
design)

Industrial objective

Provide a “ready-to-use” sound
propagation simulation tool

• suitable to modern
computer architectures

• applicable to large, complex
industrial problems

→ can serve as basis for
optimization routines
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Physical models for sound propagation

Navier-Stokes Full Euler
Boltzmann

(LBM schemes)

no viscosity

Aeroacoustic analogies
(Lighthill, FWH, ...)

Linearized
Navier-Stokes

Linearized Eu-
ler/Galbrun

Acoustic per-
turbation

Linearized potential
Convected

wave/Helmholtz
Wave/Helmholtz

equation

no hydro modes

irrotational mean flow

uniform mean flow no mean flow

linear perturbations

vector PDEs

scalar PDEs

Direct models (+ subgrid scale: LES, RANS, ...)

Hybrid models: time or frequency domain

extract sources

propagate sources

Hybrid model - solve mean flow and acoustic perturbations separately

• we choose the time-harmonic Linearized Potential Equation

• simple but accurate for single tones of turbofan engine intakes
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Physical model - Linearized Potential Equation

Scalar equation for the acoustic velocity potential v = ∇u

Linearized Potential Equation (LPE)

ρ0(x)
D0

Dt

(
1

c0(x)2
D0u

Dt

)
−∇ · (ρ0(x)∇u) = f ,

D0

Dt
= iω + v 0(x) · ∇

Helmholtz-type problem with convection and heterogeneities

Mathematical difficulties

• oscillatory, non-local solution

• complex valued, strongly
indefinite with ω

• unbounded domain

• convection effects

does not converge with classical
iterative methods [Ernst, Gander 2012 ]

→ use a direct solver

Point source in a uniform flow

M = ∥v 0∥ /c0 = 0.6
M < 1 (Subsonic flow)

PhD defense June 16, 2022 8 / 60



Outline

1. Industrial context
Physical models for sound propagation
Reaching the memory limit
Objective of the thesis

2. Domain decomposition framework
Method overview
Flow acoustics formulation
Updated objective

3. ABCs for heterogeneous and convected problems
Microlocal analysis
Application to the Linearized Potential Equation
Numerical examples

4. Application to non-overlapping domain decomposition
Heterogeneous waveguide problems
Convected problem in freefield

5. The 3D turbofan intake radiation problem
Numerical results for the turbofan problem
Solver weak scalability

PhD defense June 16, 2022 9 / 60



Reaching the high frequency limit

Industrial example : single tone turbofan intake radiation
Current solver : high-order p-FEM with direct solver (MUMPS)

ωbpf ↔≈ 25 wavelengths

ωbpf, Ndofs = 10M, nnz = 730M
Direct solver → 740 Gb of RAMw� increase ω ?

2× ωbpf, Ndofs = 73M, nnz = 5B
Direct solver ≈ 6 Tb of RAM ...

O(ω3) scaling in memory & time ...

can we distribute the memory cost ? → domain decomposition
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Objective of the thesis

Industrial objective

Provide a (scalable) parallel solver to increase the upper frequency limit

Starting point of the thesis

Discretization

• high-order finite elements
→ reduce discretization error
(interpolation & dispersion)

• adaptive order based on a-priori
error indicator [Bériot et al. 2016 ]

→ less unknowns

Parallelization

• algebraic parallelization is hard
for Helmholtz problems

• instead, “divide and conquer”
at the continuous (PDE) level
→ domain decomposition

• lots of approaches, but common
framework [Gander, Zhang 2019 ]

Selected solution - 1st objective
Extend the non-overlapping optimal Schwarz domain decomposition
framework [Boubendir et al. 2012 ] to the Linearized Potential Equation
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Overview - Non-overlapping optimal Schwarz

Toy example: disk scattering by a plane wave

• Partition Ω =
⋃Ndom−1

i=0 Ωi

into subdomains

Iterate until convergence

1. Solve the volume
subproblems ui with
boundary conditions

2. update the interfaces
unknowns g = (gij , gji )
through transmission
conditions (Si ,Sj) ⇔ solve
surface problem

Ωphy

Γ∞

gij

u1

u2u3

u4

Si

• convergence ? [Desprès 1991 ]

• How to choose the operators
(Si ,Sj) ? → numerous works ...

Optimal convergence with the
Dirichlet-to-Neumann operator
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Flow acoustics formulation

In each subdomain Ωi , solve the boundary value problems

Non-overlapping optimal Schwarz formulation
ρ0

D0

Dt

(
1
c20

D0ui
Dt

)
−∇ · (ρ0∇ui ) = 0 in Ωi , (LPE)

ρ0
(
1−M2

n
)
(∂niui + ıΛ̃+ui ) = 0, on Γ∞i (radiation condition)

ρ0
(
1−M2

n
)
(∂niui + ıSiui ) = gij , on Σij , (interface condition)

Introduce the interface coupling on Σij

gij = ρ0
(
1−M2

n
) (

−∂njuj + ıSiuj
)

= −gji + ıρ0
(
1−M2

n
)
(Si + Sj)uj := Tjigji + bji

Rewrite the coupling as a linear system for g = (gij , gji )
T

(I − A)︸ ︷︷ ︸
iteration matrix

g︸︷︷︸
interface unknowns

= b︸︷︷︸
physical sources

, A =

(
0 Tji
Tij 0

)

Tij and Tji are the iteration operators, and can be written in terms of Λ̃+
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High-level algorithmic procedure

Surface iteration operators

Tji =
Si − Λ̃+

Sj + Λ̃+
, Tij =

Sj + Λ̃−

Si − Λ̃−

Iteration matrix eigenvalues: λ(I−A) = 1±
√
TjiTij

If we choose Si = Λ̃+ and Sj = −Λ̃−, we have optimal convergence

Parallel iterative algorithm for the process i
Do in Ωi at iteration (n + 1) , ∀j ∈ Di

1. given g
(n)
ij , solve u

(n+1)
i in Ωi ,

2. update the (n + 1) neighbourhood data through

g
(n+1)
ji = −g

(n)
ij + ıρ0

(
1−M2

n
)
(Si + Sj)u

(n+1)
i on Σij ,

(Λ̃+,−Λ̃−) are non-local DtN maps for the LPE

→ design sparse approximations Si ≈ Λ̃+ and Sj ≈ −Λ̃−

⇔ approximate Schur complements at the algebraic level
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Algebraic interpretation of domain decomposition

Global problem for two subdomains (i , j) with a common interface Σ KΩ
i 0 KΩ,Σ

i

0 KΩ
j KΩ,Σ

j

KΣ,Ω
i KΣ,Ω

j KΣ,Σ
i +KΣ,Σ

j


 uΩi

uΩj
uΣ

 =

 f Ωi
f Ωj

f Σi + f Σj


Direct parallel solver → block LU factorization per subdomain I 0 0

0 I 0

KΣ,Ω
i (KΩ

i )
−1 KΣ,Ω

j (KΩ
j )

−1 I

KΩ
i 0 0
0 KΩ

j 0
0 0 L

I 0 (KΩ
i )

−1KΩ,Σ
i

0 I (KΩ
j )

−1KΩ,Σ
j

0 0 I

 ,

The Schur complement L = Li + Lj is dense ⇔ discrete DtN map
→ advances on dense Block Low-Rank factorization [Amestoy et al. 2019 ]

The non-overlapping Schwarz approach can be seen as an iterative solver
for L preconditioned by interfaces conditions
→ approximate block LU factorization at the continuous level
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Summary and updated objective

Non-overlapping domain decomposition for flow acoustics

• similar to the Helmholtz formulation, common framework

• quick convergence relies on sparse approximations of the DtN map
⇔ Non-reflecting boundary conditions

Updated objective

Design non-reflecting boundary conditions for heterogeneous and
convected time-harmonic problems

Two techniques were studied during the thesis

1. Absorbing Boundary Conditions (ABC) [Marchner et al. SIAP 2022 ],

2. Perfectly Matched Layers (PML) [Marchner et al. JCP 2021 ],

Next section

Focus on the construction of Absorbing Boundary Conditions
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Microlocal analysis - DtN operator

Goal: find local approximations to the Dirichlet-to-Neumann map

DtN operator on Σ

Λ̃+ :

{
H1/2(Σ) → H−1/2(Σ)

u|Σ 7→ ∂nu|Σ = −i Λ̃+u|Σ

through pseudo-differential calculus
[Engquist and Majda 1977, 1979 ] [Antoine et al. 1999 ]

u

xn

τ
(y , ξ)

Σ

Example : 2D heterogeneous Helmholtz half-space problem

L = ρ−1
0 ∂x(ρ0∂x) + ρ−1

0 ∂y (ρ0∂y ) + ω2c−2
0

≈
?

(
∂x + ı

√
ω2c−2

0 + ρ−1
0 ∂y (ρ0∂y )

)(
∂x − ı

√
ω2c−2

0 + ρ−1
0 ∂y (ρ0∂y )

)
We cannot formally factorize L when ∂x(ρ0) ̸= 0 or ∂x(c0) ̸= 0
• Apply the principle to the symbol λ+ of Λ+

→ work on polynomials in the co-tangent Fourier space ξ
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Pseudo-differential operator

We define a differential operator of order m,

P(x , ∂x) =
∑

|α|≤m

(−ı)αaα(x)∂α
x , x ∈ Rd , α = (α1, . . . , αd) ∈ Nd ,

through its inverse Fourier representation → more general framework

Pseudo-differential operator of order m

P(x , ∂x)u(x) = 1
(2π)d

∫
Rd e

ıx·ξp(x , ξ)û(ξ)dξ, ξ ∈ Rd

p is the symbol of the operator P, and is a smooth function of (x , ξ)

Symbol of the operator P
p(x , ξ) =

∑
|α|≤m aα(x)ξα, ξα = ξα1

1 . . . ξ
αd
d

The highest order term is the principal symbol. We use classical symbols Sm
cl

∣∣∣∂β
x ∂

α
ξ p(x , ξ)

∣∣∣ ≤ C(α,β,K)(1 + |ξ|)m−|α|, ∀(x , ξ) ∈ K × Rd ,

Notations:

P = Op(p) ∈ OPSm, p ∈ Sm
cl ⇔ P ∈ OPSm, OPS−∞ =

⋂
m∈R OPSm
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Derivation of the DtN symbol - Helmholtz case

Nirenberg’s factorization theorem: there exists (Λ+,Λ−) ∈ OPS1

L =
(
∂x + ıΛ−) (∂x + ıΛ+) mod OPS−∞

= ∂2
x + ı

(
Λ+ + Λ−) ∂x + ıOp

{
∂xλ

+}− Λ−Λ+ mod OPS−∞.

Identify with the Helmholtz operator and get a system for (Λ+,Λ−)
{

Λ+ + Λ− = −ıρ−1
0 ∂x(ρ0)(

Λ+
)2

+ ıρ−1
0 ∂x (ρ0)Λ

+ + ıOp
{
∂xλ

+
}
= ω2c−2

0 + ρ−1
0 ∂y (ρ0∂y )

→ “One-way” reformulation of the equation
“High frequency” asymptotic expansion for the total symbol λ+

λ+ ∼
∞∑

j=−1

λ+
−j = λ+

1 + λ+
0 + λ+

−1 + · · · (classical symbol expansion)

Each symbol λ+
−j is homogeneous in (ω, ξ)−j .

Once λ+
1 is fixed, the expansion is unique and can computed formally

λ+
1 =

√
ω2c−2

0 − ξ2, λ+
0 = −ı

(
∂x (ρ0)

2ρ0
+

ξ∂y (ρ0)

2ρ0λ
+
1

+
ω2∂x

(
c−2
0

)

4
(
λ+
1

)2 +
ξω2∂y

(
c−2
0

)

4
(
λ+
1

)3

)
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Microlocal zones

Hyperbolic zone: ℜ(λ+
1 ) > 0 → outgoing propagative waves

Elliptic zone: ℑ(λ+
1 ) < 0 → outgoing evanescent waves

Rotation of the square-root branch-cut [Milinazzo et al. 1997 ]

λ+
1 = eıα/2

√
e−ıα(ω2c−2

0 − ξ2), α ∈ [0,−π], (+ıωt convention)

The branch-cut is rotated by an angle α in the complex plane

• Hyperbolic zone: ωc−1
0 > |ξ| → α = 0,

• Elliptic zone: ωc−1
0 < |ξ| → α = −π,

• Grazing zone: ωc−1
0 = |ξ|, ill-posed problem

In practice we choose α ∈ (0,−π/2]
→ trade-off to capture both propagative and evanescent waves
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Summary - building the DtN approximation

Approximate DtN operator with the M first symbols

∂nu = −ıΛ+
Mu, Λ+

M =
M−2∑
j=−1

Op
(
λ+
−j

)
Take the trace on the boundary Σ to get Λ̃+

M , such that(
Λ̃+ − Λ̃+

M

)
∈ OPS1−M

Technical difficulties

• the formal computation of λ+
−j can be involved (PDE dependent)

• the operator Op
(
λ+
−j

)
is in general not unique and still non-local

• limited a priori to smooth variations of ρ0 and c0

Next step - original contribution

• Apply the theory to flow acoustics
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DtN symbol computation

Step 1 Nirenberg’s factorization theorem for the flow acoustics operator

L = D0

Dt

(
1
c20

D0

Dt

)
− ρ−1

0 ∇ · (ρ0∇) , D0

Dt = ıω + v0 · ∇

We note Mx = v0,x/c0, My = v0,y/c0, M = ∥v0∥ /c0, k0 = ω/c0
Step 2 Derive an operator equation for the outgoing characteristic Λ+

(
1−Mx

2
)
(Λ+)2 − ı (A1 +A0) Λ

+ + ı(1−Mx
2)Op

{
∂xλ

+} = B2 + B1 mod OPS−∞

with ı
(
Λ+ + Λ−) = (A1 +A0) /(Mx

2 − 1), σ(Aj), σ(Bj) ∈ S j
cl, j = {0, 1, 2}

Step 3 Classical symbol expansion, identify 2nd order terms in (ω, ξ)

DtN principal symbol for flow acoustics

λ±
1 = 1

1−Mx
2

[
−Mx (k0 − ξMy )±

√
k2
0 − 2k0Myξ − (1−M2) ξ2

]
Microlocal zones delimited by ωc−1

0 =
(
My ±

√
1−Mx

2
)
ξ

Subsonic flow M < 1 ⇒ two characteristic lines of opposite sign
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DtN symbol computation

Step 3 - bis
Compute the next symbols of the expansion ...

λ+
0 =

σ(B1) + iσ(A0)λ
+
1 + i(1−Mx

2)
(
∂ξλ

+
1 ∂yλ

+
1 − ∂xλ

+
1

)
2
√
k2
0 − 2k0Myξ − (1−M2) ξ2

.

If My = 0 we have the simplification

Zeroth order symbol for an x-oriented flow

λ+
0 = −ı∂x (ρ0)

2ρ0

k2
0−ξ2

k2
0−(1−Mx

2)ξ2
+ ı∂x (c0)

2c0

k2
0+Mx

2ξ2

k2
0−(1−Mx

2)ξ2

λ+
−1 = ..., λ+

−2 = ...
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Going back to the operator level

Final step go back to the operator level

Approximate DtN operator

Λ̃+
1 = Op(λ+

1 ) =
k0

1−Mn2

(
−Mn + ıMnMτ

∇Σ

k0
+
√
1 + X

)
X = −2ıMτ

∇Σ

k0
+
(
1−M2

)
∆Σ

k2
0
, M = ∥v0∥ /c0

For the half-space problem with constant coefficients

Λ̃+ = Λ̃+
1 mod OPS−∞

For variable coefficients and/or in the tangent plane approximation (n, τ )

Λ̃+ = Λ̃+
1 mod OPS0

The choice for Op(λ+
1 ) is not unique, but has λ

+
1 as principal symbol

Issue: the approximate DtN map Λ̃+
1 is still non-local

→ we need a local representation for
√
1 + X
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Localization procedure

High-frequency approximation for
√
1 + X , X → 0 (ω → +∞)

Use complexified Padé or Taylor approximations (N, α) for

Λ(Z ) = eıα/2
√
1 + Z , Z = [e−ıα(1 + X )− 1],

with Z a surfacic second order differential operator on the boundary Σ

Taylor approximation

Λ(Z ) ≈ eıα/2
∑N

ℓ=0

(
1/2
ℓ

)
(e−ıα(1 + X )− 1)

ℓ

Padé approximation

Λ(Z ) ≈ K0(α) +
∑N

ℓ=1 Aℓ(α)X (1 + Bℓ(α)X )−1

Resulting local Absorbing Boundary Conditions

Complex Padé approximants: Λ̃+
1 → ABCN,α

1

Complex Taylor approximants: Λ̃+
1 → ABCT0,α

1 and ABCT2,α
1
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High-order FEM implementation

Discretization on a conformal, high-order H1-basis

Weak formulation for the linearized potential equation

∀v ∈ V ⊆ H1(Ω),∫
Ω

[
ρ0∇u · ∇v − ρ0

c20

D0u
Dt

D0v
Dt

]
dΩ+ ı

∫
Σ
Guv dΣ =

∫
Ω
f v̄dΩ

The boundary operator G takes the same form as in the Helmholtz case
∫

Σ

Gu v dΣ =

∫

Σ

eıα/2ρ0k0
√
1 + Z u v dΣ

with Z = e−ıα
(
1− 2ıMτ

∇Σ
k0

+
(
1−M2

)
∆Σ

k20

)
− 1

Taylor approximants: ABCT2,α
1

∫

Σ

Gu v dΣ = cos(α/2)

∫

Σ

ρ0k0 u v dΣ

+ e−ıα/2

(∫

Σ

ρ0Mτ∇Σu v dΣ−
∫

Σ

ρ0
(1−M2)

2k0
∇Σu∇Σv dΣ

)
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High-order FEM implementation - Padé case

Padé approximants: ABCN,α
1

∫

Σ

Gu v dΣ =

∫

Σ

ρ0k0K0(α) u v dΣ+
N∑

ℓ=1

∫

Σ

ρ0k0Aℓ(α)Xφℓ v dΣ

with X = −2ıMτ
∇Σ
k0

+
(
1−M2

)
∆Σ

k20

Introduce auxiliary fields φℓ = (1 + BℓX )−1u to obtain a sparse
discretization of inverse operators
→ augmented system of N surfacic equations

∀ℓ ∈ [1,N], ∀vℓ ∈ H1(Σ)N ,

∫
Σ

(1 + Bℓ(α)X )φℓv ℓ dΣ =

∫
Σ

uv ℓ dΣ

Global linear system of size [Ndof,Ω + (N × Ndof,Σ)]
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Longitudinal heterogeneous waveguide

Example 1: No mean flow, single mode propagation in a heterogeneous
waveguide: ρ0 = 1, c0(x , y) = c0(x)

wave direction

c−2
0 (x) = ax + b > 0

∂nu = 0, Γ2

Γ1
∂nu = g

Γ3
∂nu = −ıΛ̃+u

0

Ω = [0, L]× [0,H]

H

L x

y

Single mode analytic solution for a linear profile

unex(x , y) = cos (kyy)Ai
(
e−

2ıπ
3

k2
y−ω2(ax+b)

(aω2)2/3

)
, ky = nπ

H , n ∈ N
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Approximation at the symbol level

c−2
0 (x) = 5x + 0.1, L = 1 at fixed frequency ω = 30

Analytic total symbol

λ+ = −ıe−
2ıπ
3

(
aω2

)1/3 Ai′(ζ)
Ai(ζ) , ζ = e−

2ıπ
3

ξ2−ω2(aL+b)

(aω2)2/3

0 20 40 60 80 100 120 140 160
10−7

10−4

10−1

102

ξ

∣∣∣λ+ −∑M−2
j=−1 λ

+
−j

∣∣∣
M = 1

M = 2

M = 3

• singularity in the grazing regime ξ ≈ ωc−1
0
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Numerical results

ABCN,α
M : Local Padé approximation of Λ̃+

M with rotation branch-cut α

ω = 20, xt = 0.16, n = 3

Relative L2-error (%)

Use the derivative of c0 ⇒ more accurate ABC: ABCN+1,α
2 > ABCN,α

1

Gain of ≈ two order of magnitude
Precision limited by the DtN symbol truncation

Similar conclusion with Taylor approximations of order 0 and 2
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Point source convection in free field

Example 2: ρ0 = c0 = 1, point source in uniform mean flow of angle θ

Padé approximants → ABCN,α
1 , Taylor approximants → ABCT0,α

1 , ABCT2,α
1

Attempt to incorporate curvature effects from λ+
0 (circle of radius R)

ABC2 = ABC1 + (1−M2)/(2R)

k0 = 6π,M = 0.95,R = 1, θ = π/4
Relative L2-error (%)

ABCN,α
1 is robust for high Mach numbers - wavelength ratio (1 +M)/(1−M)
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Waveguide problem with straight partitions

Domain partition: Ω =
⋃Ndom−1

i=0 Ωi , Σij = ∂Ωi

⋂
∂Ωj , j ̸= i

∂nu = 0 Γ2

Γ1
∂nu = g

Γ∞
(NRBC)

0

H

L x

y

Ω0, u0

Σ01, g01

Ω1, u1

Σ12, g12

Ω2, u2

Σ23, g23

Ω3, u3

Two test cases

1. Linear speed of sound profile : c−2
0 (x) = ax + b

2. Transverse density and/or speed of sound : c0(y), ρ0(y)
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Longitudinal heterogeneous waveguide

Reminder - ABC study
• ABCN+1,α

2 > ABCN,α
1

• Precision limited by the truncation of the total DtN symbol λ+

Plot theoretical convergence radius ρ(m, x) =
√∣∣T m

ij T m
ji

∣∣ at ω = 30

0 20 40 60 80 100120140160
10−5

10−4

10−3

10−2

10−1

100

m

ρ

xΣ = 0.1, εopt = 2.59

0 20 40 60 80 100120140160
10−5

10−4

10−3

10−2

10−1

100

m

xΣ = 0.5, εopt = 0.96

ABC
T0,−π/2
1

ABC
T2,−π/2
1

ABC
T2,−π/2
2

ABC
6,−π/2
1

ABC
6,−π/2
2

DDM waveguide study - input boundary condition with the 21 first modes

Ndom ABCT0,α
1 ABCT2,α

1 ABC6,α
1 ABC6,α

2
8 76 (dnc) 51 (87) 34 (37) 24 (27)

Table: GMRES(Jacobi) iterations to 10−6 at ω = 40, α = −π/4, dλ = 12
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Transverse heterogeneous waveguide

Gaussian waveguide: c0(y) = 1.25
(
1− 0.4e−32(y−H/2)2

)
, ρ0(y) = c20 (y)

0.5 1 1.5

−0.5

0.5

<(λ)

=(λ)

y = 0.35

0.5 1 1.5

−0.5

0.5

<(λ)

=(λ)

y = 0.5

ABCT0,−π/2

ABC
T2,−π/2
k0

ABC
6,−π/2
k0

ABC
6,−π/2
ω,S

Figure: Theoretical eigenvalues of the DDM iteration matrix, ω = 50

• Usual Padé approximation (classical principal symbol) - Si = ABCN,α
k0

• New approximation (semi-classical principal symbol) - Si = ABCN,α
ω,S

→ almost perfect clustering
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Illustration for a Gaussian waveguide

DDM - large PML on Γ∞ - input mode n = 4 - Ndom = 8

Ndom ABC
T0,−π/4
k0

ABC
T2,−π/4
k0

ABC
4(8),−π/4
k0

ABC4(8),−π/4
ω

8 111 74 42 (42) 20 (8)

Table: GMRES iterations to 10−6 at ω = 160, dλ = 24

Convergence in Ndom iterations → continuous block LU factorization
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Convected problem in freefield - circular interfaces

(a) ABC
4,−π/4
1 , EL2 = 1.7% (b) ABC

T2,−π/4
1 , EL2 = 24%

Numerical solution after 4 GMRES iterations.
Parameters: M = 0.9, θ = π/4, p = 9, dλ = 8, Ndom = 5, ω = 6π.
L2-error “PML-analytical solution” : 0.8%.

Padé conditions are robust for high Mach numbers
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Mach number variation - circular interfaces

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0
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Mach number
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ABCT0,0

ABCT0,−π/4

ABCT2,−π/4

ABC4,−π/4

ABC8,−π/4

Figure: GMRES iterations to reach 10−6 for Ndom = 5, ω = 6π

• Only Padé conditions are robust for high Mach numbers

• Layered partition: iteration number increases as O(Ndom)

PhD defense June 16, 2022 49 / 60



Convected problem in freefield - arbitrary decomposition

Automatic partitioning

• Cross-points
→ harder to design ABCs

• Industrial need - good load
balancing between subproblems

• Shorter connectivity graph -
O(

√
Ndom)

Ndom = 256

Corner problem : use Padé approximants on edges with Sommerfeld-type
condition on corners → approximate corner treatment
Resulting condition ABCN,α

S

Are such Padé conditions still effective for domain decomposition ?
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Numerical study - arbitrary decomposition

0 0.2 0.4 0.6 0.8

50

100

150

200

Mach number

It
er
at
io
n
s

Ndom = 16

2 4 8 16 32 64 128 256
16

32

64

128

256

O(
√

Ndom)

Ndom

M = 0.7

ABCT0,0

ABCT2,−π/2

ABC
4,−π/2
S

GMRES iterations to reach 10−6 for ω = 6π, dλ = 8

• lost of robustness for high
Mach numbers

• ABCT2,−π/2, ABC
4,−π/2
S

→ similar performance

• ABCT2,−π/2 is cheaper (and
easier) to implement

5 10 15 20 25 30

60

80

100

ω/π

It
er
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io
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s

dλ = 6

dλ = 8

dλ = 12

dλ = 20

M = 0.7,Ndom = 16, ABCT2,−π/2
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The boundary value problem

Given a flight configuration (mean flow), predict the radiated noise from
the fan, at multiples of the blade passing frequency ωbpf/(2π) = 1300 Hz

D0
Dt

(
1
c20

D0
Dt

)
− ρ−1

0 ∇ · (ρ0∇)

Ω Γ∞

Γs

Γ`

acoustic lining

ρ0(x), c0(x),v0(x)

Boundary conditions

• Ingard-Myers on Γℓ
• PML (active) on Γs

• Fixed annular Bessel
mode on Γs

• PML (passive) on Γ∞

The mean flow is pre-computed and interpolated on the acoustic mesh
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DDM for the 3D turbofan problem

ωbpf - Ndofs = 10M - nnz= 730M ≈ 25 wavelengths in Ω
Direct solver → 740 Gb RAM for factorization

2 8 32 128 512
64

128

256

512

1024

O
(
N

1/3
dom

)

# MPI processes

G
M
R
E
S
it
er
at
io
n
s

2 8 32 128 512
100

101

102

# MPI processes

P
ea
k
m
em

or
y
(G

b
)

Min Max

Parallel GmshDDM solver (mono-thread)
From Ndom > 128, under 10 minutes and less than 3Gb per process
Iterations for Ndom = 64

• ABCT2,−π/2: 372 GMRES iterations to 10−6

• ABCT0,0: > 2000 GMRES iterations to reach 10−3
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DDM for the 3D turbofan problem

2× ωbpf - Ndofs = 73M - nnz = 5B ≈ 50 wavelengths in Ω
Parallel GmshDDM solver (mono-thread), Ndom = # MPI = 128
→ 2hours 3min, 26 Gb peak memory, 712 GMRES iterations (with lining)

Figure: Real part of the acoustic velocity potential for the mode (48, 1) at
2× ωbpf (2600 Hz) without (left) and with (right) acoustic lining treatment.
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Weak scalability assessment

3D Helmholtz problem with dλ = 7.5 points per wavelength
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Figure: Weak scaling timing for 1 iteration

Limitations

• memory load balancing: [20-34] Gb for 1024 processes

• number of iterations scales as O(N
1/3
dom) in 3D
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General summary and conclusion

Distributed memory solver for high frequency flow acoustics

1. Extension of a generic domain decomposition method to flow acoustics

2. Development of non-reflecting boundary conditions: ABCs and PMLs

▶ extension to media with heterogeneities and convection
▶ general PML procedure for flow acoustics

3. Code development (GmshDDM), validation and assessment of ABCs in a
domain decomposition context

4. Proof of concept - turbofan intake

5. 80% scalability up to 700M high-order unknowns and 1024 MPI processes
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General summary and conclusion

Limitations

• The iterative solver does not scale with Ndom → requires coarse
space

• Theoretical limitations - corners, curved boundaries, PML-DDM, etc.

Future developments

• Extension to Pierce equation → turbofan exhaust [Spieser, Bailly 2020 ]

• Modern discretization techniques such as HDG or HHO [Li et al. 2013 ]

• Interfaces through the mesh → immersed transmission conditions

Thank you !
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