Numerical analysis (1/7): Errors in numerical analysis

University of Luxembourg

Philippe Marchner
Siemens Digital Industries Software, France

October 19th, 2023

1/19

1. Introduction: types of errors

2. Computer representation of real numbers
3. Floating-point arithmetic

4. Conditioning and stability

5. Summary

2/19

1. Introduction: types of errors

3/19

Types of errors

What type of errors do we find in numerical analysis ?

1. Errors in the problem to be solved

® errors in the mathematical model

® errors in the input data: noise, measurement
2. Round-off errors (today’s topic, computer floating-point representation)
3. Approximation errors

® Discretization/truncation errors: going from the continuous to the discrete level
® Convergence errors: iterative methods

4/19

Round-off vs discretization error: example

Derivative approximation (see exercise)
f(xo + h) — f(x
f/(XO) _ (0 /)7 (0) +O(h)
The discretization error is linear with h
But when h is too small, we have round-off errors

10°
1072
.
g
¢ 107
]
=
S 1076
Q
<
1078 —— forward difference
- O(h)
10-10 i
10716 10713 1071 1077 104 107!

h

5/19

2. Computer representation of real numbers

6/19

Floating-point representation

A computer has a finite capacity and cannot store all real numbers (7 ~ 3.14159...)
Any number is approximated by a rational number, and has a finite number of digits d;

Floating point representation of x € R

pp—1
m: mantissa or significand, e: exponent, b: radix or basis, p: precision
Normalized (unique) representation: 1 < m < b, dy # 0

|

fi(x) =+tmx b, m= %+%+...+dpfl>

Let us choose fl(x) = +152853.50, b=10,p=8,e=5

152853.50 = 1.5285350 x 10° = 13285350 5 105 = (1 x 1094+ 5x 1071 +--- + 0 x 1077) x 10°

7/19

Floating-point representation

Approximate 7 in base 2, p = 24: 7 ~ 11001001 0000111111011011
Approximate 0.1 in base 2, p =16: 0.1 ~ 1100110011001101

fi(r) = (1+1x27 4. +1x272) x 2! =3.1415927, 7 digits precision (why ?)

Floating point system

A floating point system is characterized by 4 values: (b, p, U, L)
base, precision, exponent upper and lower bound such as L < e < U

Double precision format (64 bit storage)

b=2,p=52L=-1022, U = 1023
11 bit exponent, 52+1 bits for the significand (1 is implicit for the sign)

Let us look what Python uses...
8/19

Floating-point representation

Single precision: p = 23 bits significand, 8 bit exponent, U = 127

The sequence of digits
10111 1110 100 0000 0000 0000 0000 0000
considered as simple precision can be interpreted as follows:

® the first digit is 1, so the sign is negative
® the next 8 digits form the exponent:
(0111110)y = 0 x 27 +20 425 + 24 + 23 122 1 21 4+ 0 x 20 = 126
® the next 23 digits form the significand, where the first bit is 1 by convention

The number in decimal is:
—20126=U) 5 (141 x2714+0x224...4+0x28)=—-05x15=-0.75

9/19

Machine precision

When rounding, two adjacent numbers are spaced by n = b™P/2, it defines the machine
precision.

Round-off error

Absolute round-off error: |fl(x) — x| < nb®
= 7

Relative round-off error: ‘—ﬂ(x)):x

The spacing of a floating point system is constant in the relative sense

Overflow-underflow

If the exponent e is such as e > U, we have overflow, and if e < L we have underflow

Question: what are the minimum and maximum representable numbers in double precision ?

10/19

3. Floating-point arithmetic

11/19

Operations in floating point arithmetic

The usual calculus rules are altered with the floating point representation

Floating operation

X.y:(X.Y)(1+€), .:(+’_7X7+)7 |5|§77

Addition is not associative in this context ! (a+ b) +c # a+ (b+ ¢)

. a+b b+c
The relative errors are ;%7 c1(1 +2) +e2 and ;7 5ce3(1 +¢e4) + &4

Derive the relative errors of the above additions
For p = 8 try a = 2.3371258 x 1072, b = 3.3678429 x 10!, c = —3.3677811 x 10!

v
_ 7—3.1415 : : P -
Compute Q = T07(7—3.1515) 0,057 by truncating m with p significant digits

o

12/19

4. Conditioning and stability

13/19

Stability is an important concept in numerical analysis, and is found in different contexts:
® stability of numerical schemes (e.g. ODEs, finite differences),
® stability of numerical algorithms (e.g. linear systems),
e stability has also meanings at the continuous level (PDE, dynamical systems),

It is linked to the propagation of errors during the computation.

14/19

Forward and backward errors

® The forward error measures the difference between the computed and exact value |j — y/|

® The backward error is the error on the input: |X — x|, for a perturbed output y = (%)

If the backward error is “small”, we say the algorithm to be backward-stable

o D /@)

Backward error S %,o ¢ Forward error

z+ Az

Figure: lllustration from Nicholas J. Higham blog

15/19

The condition number is the ratio of a relative change in the output to a relative change in the
input

Condition number &

o = [ER)—F))/F()| _ [0=y)/yl _ |Ay/yl
|(x=x)/x] I(x=x)/x| — [Ax/x|

We have the relation
[relative forward error| = Condition number X|relative backward error|

It represents the sensitivity related to the input data.
Conditioning depends on the problem, stability depends on the algorithm

Condition number of a C! function f

xf'(x)

when X = x, we have kr =~ o

16/19

Conditioning and stability - examples

Find the conditioning of the functions \/x, a — x, tan(x)

Evaluate the stability of f(x) = v/x + 1 — /x by computing f(12345) with p = 6 significant
digits

Try again using the formula f(x) = m

Compare the stability properties of the two formulas

17/19

5. Summary

18/19

® All machines use a floating-point representation,
® \We must be very careful during computations to avoid round-off errors,
[

Conditioning and stability analysis are useful theoretical tools,

® Designing numerically stable algorithms is in general not trivial

19/19

	Introduction: types of errors
	Computer representation of real numbers
	Floating-point arithmetic
	Conditioning and stability
	Summary

