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Types of errors

What type of errors do we find in numerical analysis ?

1. Errors in the problem to be solved
• errors in the mathematical model
• errors in the input data: noise, measurement

2. Round-off errors (today’s topic, computer floating-point representation)

3. Approximation errors
• Discretization/truncation errors: going from the continuous to the discrete level
• Convergence errors: iterative methods
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Round-off vs discretization error: example

Derivative approximation (see exercise)

f ′(x0) =
f (x0 + h)− f (x0)

h
+O(h)

The discretization error is linear with h
But when h is too small, we have round-off errors
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Floating-point representation

A computer has a finite capacity and cannot store all real numbers (π ≈ 3.14159...)
Any number is approximated by a rational number, and has a finite number of digits di

Floating point representation of x ∈ R

fl(x) = ±m × be , m =
(
d0
b0

+ d1
b1

+ · · ·+ dp−1

bp−1

)
m: mantissa or significand, e: exponent, b: radix or basis, p: precision
Normalized (unique) representation: 1 ≤ m < b, d0 ̸= 0

Examples

Let us choose fl(x) = +152853.50, b = 10, p = 8, e = 5

152853.50 = 1.5285350× 105 = 15285350
107

× 105 = (1× 100 +5× 10−1 + · · ·+0× 10−7)× 105
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Floating-point representation

Examples

Approximate π in base 2, p = 24: π ≈ 11001001 00001111 11011011
Approximate 0.1 in base 2, p = 16: 0.1 ≈ 11001100 11001101

fl(π) =
(
1 + 1× 2−1 + · · ·+ 1× 2−23

)
× 21 = 3.1415927, 7 digits precision (why ?)

Floating point system

A floating point system is characterized by 4 values: (b, p,U, L)
base, precision, exponent upper and lower bound such as L ≤ e ≤ U

Double precision format (64 bit storage)

b = 2, p = 52, L = −1022,U = 1023
11 bit exponent, 52+1 bits for the significand (1 is implicit for the sign)

Let us look what Python uses...
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Floating-point representation

Example

Single precision: p = 23 bits significand, 8 bit exponent, U = 127

The sequence of digits
1 0111 1110 100 0000 0000 0000 0000 0000

considered as simple precision can be interpreted as follows:

• the first digit is 1, so the sign is negative

• the next 8 digits form the exponent:
(0111110)2 = 0× 27 + 26 + 25 + 24 + 23 + 22 + 21 + 0× 20 = 126

• the next 23 digits form the significand, where the first bit is 1 by convention

The number in decimal is:
−2(126−U) × (1 + 1× 2−1 + 0× 2−2 + · · ·+ 0× 2−23) = −0.5× 1.5 = −0.75
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Machine precision

When rounding, two adjacent numbers are spaced by η = b−p/2, it defines the machine
precision.

Round-off error

Absolute round-off error: |fl(x)− x | ≤ ηbe

Relative round-off error:
∣∣∣fl(x)−x

x

∣∣∣ ≤ η

The spacing of a floating point system is constant in the relative sense

Overflow-underflow

If the exponent e is such as e > U, we have overflow, and if e < L we have underflow

Question: what are the minimum and maximum representable numbers in double precision ?
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Operations in floating point arithmetic

The usual calculus rules are altered with the floating point representation

Floating operation

x • y = (x • y)(1 + ε), • = (+,−,×,÷), |ε| ≤ η

Addition is not associative in this context ! (a+ b) + c ̸= a+ (b + c)
The relative errors are a+b

a+b+c ε1(1 + ε2) + ε2 and b+c
a+b+c ε3(1 + ε4) + ε4

Examples

Derive the relative errors of the above additions
For p = 8 try a = 2.3371258× 10−5, b = 3.3678429× 101, c = −3.3677811× 101

Examples

Compute Q = π−3.1415
104(π−3.1515)−0.927

by truncating π with p significant digits
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Stability

Stability is an important concept in numerical analysis, and is found in different contexts:

• stability of numerical schemes (e.g. ODEs, finite differences),

• stability of numerical algorithms (e.g. linear systems),

• stability has also meanings at the continuous level (PDE, dynamical systems),

It is linked to the propagation of errors during the computation.
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Stability

Forward and backward errors
• The forward error measures the difference between the computed and exact value |ŷ − y |
• The backward error is the error on the input: |x̂ − x |, for a perturbed output ŷ = f (x̂)

If the backward error is “small”, we say the algorithm to be backward-stable

Figure: Illustration from Nicholas J. Higham blog
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Conditioning

The condition number is the ratio of a relative change in the output to a relative change in the
input

Condition number κ

κ = |(f (x̂)−f (x))/f (x)|
|(x̂−x)/x | = |(ŷ−y)/y |

|(x̂−x)/x | =
|∆y/y |
|∆x/x |

We have the relation
|relative forward error| = Condition number ×|relative backward error|

It represents the sensitivity related to the input data.
Conditioning depends on the problem, stability depends on the algorithm

Condition number of a C 1 function f

when x̂ ≈ x , we have κf ≈
∣∣∣ xf ′(x)f (x)

∣∣∣
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Conditioning and stability - examples

Examples

Find the conditioning of the functions
√
x , a− x , tan(x)

Examples

Evaluate the stability of f (x) =
√
x + 1−

√
x by computing f (12345) with p = 6 significant

digits
Try again using the formula f (x) = 1√

x+1+
√
x

Compare the stability properties of the two formulas
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Summary

• All machines use a floating-point representation,

• We must be very careful during computations to avoid round-off errors,

• Conditioning and stability analysis are useful theoretical tools,

• Designing numerically stable algorithms is in general not trivial
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