Numerical analysis $(2/7)$: Interpolation, approximation University of Luxembourg

Philippe Marchner

Siemens Digital Industries Software, France

October 26th, 2023

1. [Overview](#page-2-0)

2. [Polynomial interpolation](#page-4-0) [Review: stable evaluation of a polynomial](#page-5-0) [Lagrange interpolation](#page-8-0) [Newton form of the interpolant](#page-14-0) [Error in interpolation](#page-17-0)

3. [Polynomial approximation theory](#page-23-0) [Least squares problem](#page-24-0) [Orthogonal polynomials](#page-26-0)

1. [Overview](#page-2-0)

2. [Polynomial interpolation](#page-4-0) [Review: stable evaluation of a polynomial](#page-5-0) [Lagrange interpolation](#page-8-0) [Newton form of the interpolant](#page-14-0) [Error in interpolation](#page-17-0)

3. [Polynomial approximation theory](#page-23-0) [Least squares problem](#page-24-0) [Orthogonal polynomials](#page-26-0)

Polynomial interpolation is an important building block of numerical analysis. We try to fit a polynomial P of degree $\leq n$ that exactly pass by $n+1$ given points

$$
y_i=P(x_i),\ i\in\{0,n\}.
$$

It is a special case of approximation: find a simpler function P (we focus on polynomials) that is the closest to f with respect to some **distance**

- We can study the interpolation error, where we have more liberty to choose the x_i
- $\bullet\,$ We do not need P to pass through x_i , but only capture the main trend of $f\colon$ least squares

If we have a lot of data $(x_i,y_i),\; i\in\{0,m\}$ with $m\gg n,$ we can try to $\mathop{\sf fit}$ the $\mathop{\sf data}$ to a polynomial P of lower degree n , we talk about discrete least squares.

1. [Overview](#page-2-0)

2. [Polynomial interpolation](#page-4-0) [Review: stable evaluation of a polynomial](#page-5-0) [Lagrange interpolation](#page-8-0) [Newton form of the interpolant](#page-14-0) [Error in interpolation](#page-17-0)

3. [Polynomial approximation theory](#page-23-0) [Least squares problem](#page-24-0) [Orthogonal polynomials](#page-26-0)

1. [Overview](#page-2-0)

2. [Polynomial interpolation](#page-4-0) [Review: stable evaluation of a polynomial](#page-5-0) [Lagrange interpolation](#page-8-0) [Newton form of the interpolant](#page-14-0) [Error in interpolation](#page-17-0)

3. [Polynomial approximation theory](#page-23-0) [Least squares problem](#page-24-0) [Orthogonal polynomials](#page-26-0)

Polynomial evaluation

Let P be a polynomial of degree n

$$
P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0,
$$

that we want to evaluate at a point $x = \xi$

- one algorithm consists in computing each product $a_n \xi^n$ and next summing.
- but this technique is generally not used
	- because of the errors that it generates (cf last week exercise)
	- the number of elementary operations is too large, most particularly when $n \gg 1$: $n(n+1)/2$ multiplications and *n* additions \rightarrow $\mathcal{O}(n^2)$ operations.
- the Hörner algorithm is generally preferred

Polynomial evaluation

Let P a polynomial of degree n

$$
P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0,
$$

that we want to evaluate at a point $x = \xi$

Hörner algorithm

The Hörner algorithm is based on the following factorization

$$
P(x) = a_0 + x (a_1 + x (a_2 + x (a_3 + ... x (a_{n-2} + x (a_{n-1} + x a_n))...)))
$$

This algorithm requires n additions and n multiplications \rightarrow $\mathcal{O}(n)$ operations It has a convenient recursive form

1. [Overview](#page-2-0)

2. [Polynomial interpolation](#page-4-0)

[Review: stable evaluation of a polynomial](#page-5-0)

[Lagrange interpolation](#page-8-0)

[Newton form of the interpolant](#page-14-0) [Error in interpolation](#page-17-0)

3. [Polynomial approximation theory](#page-23-0) [Least squares problem](#page-24-0) [Orthogonal polynomials](#page-26-0)

Lagrange interpolation

The interpolation problem

Let (y_i, x_i) be $n + 1$ distinct points $x_0, x_1, ... x_n$ and $y_0, y_1, ... y_n$ on the interval $[a, b]$. The goal is to build a polynomial P of degree less or equal to n such that

$$
P(x_i) = y_i \quad \forall i = 0, 1, \ldots, n
$$

Theorem

There exists one and only one polynomial P_n of degree less or equal to n satisfying

$$
P_n(x_i) = y_i \quad \forall i = 0, 1, \ldots, n
$$

which writes

$$
P_n(x) = \sum_{i=0}^n y_i L_i(x) \text{ with } L_i(x) = \prod_{k=0}^n \frac{(x - x_k)}{k \neq i} \frac{(x - x_k)}{(x_i - x_k)}.
$$

- This polynomial P_n is called Lagrange interpolation polynomial at the points $x_0, x_1, ..., x_n$.
- The polynomials $L_i(x)$ are the Lagrange basis functions associated to the points x_i .

Proof

• Existence

The polynomial function P_n is a polynomial of degree n. Since $L_i(x_i) = \delta_{ii}$, it satisfies

$$
P_n(x_i) = y_i \quad \forall i = 0, 1, \ldots, n
$$

Proof

• Existence

The polynomial function P_n is a polynomial of degree n. Since $L_i(x_i) = \delta_{ii}$, it satisfies

$$
P_n(x_i) = y_i \quad \forall i = 0, 1, \ldots, n
$$

• Uniqueness

Let Q be another polynomial function solution to the problem. Then $\forall i = 0, 1, ...n$

$$
Q(x_i) - P(x_i) = 0 \quad \forall i = 0, 1, \ldots, n.
$$

Therefore $Q - P$ is a polynomial function of degree less or equal to n which is zero at $n + 1$ points. As a consequence, this polynomial is identically zero.

Example

With two points $n = 1$

$$
P_1(x) = y_0 \frac{(x - x_1)}{(x_0 - x_1)} + y_1 \frac{(x - x_0)}{(x_1 - x_0)}
$$

which can also be written

$$
P_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0} (x - x_0).
$$

Example

Find the interpolating polynomial for

$$
(x_0, x_1, x_2) = (0, 2, 3), (y_0, y_1, y_2) = (1, 5, -2)
$$

Step 1: look for the 2nd order Lagrange basis (L_0, L_1, L_2) such as $L_i(x_i) = \delta_{ii}$. **Step 2:** use the theorem to find P_2 by linear combination

1. [Overview](#page-2-0)

2. [Polynomial interpolation](#page-4-0)

[Review: stable evaluation of a polynomial](#page-5-0) [Lagrange interpolation](#page-8-0) [Newton form of the interpolant](#page-14-0) [Error in interpolation](#page-17-0)

- 3. [Polynomial approximation theory](#page-23-0) [Least squares problem](#page-24-0) [Orthogonal polynomials](#page-26-0)
- 4. [Discrete least squares polynomial data fit](#page-34-0)

Remark

Computing $P_n(x) = \sum_{i=0}^n y_i L_i(x)$ requires too much elementary evaluations.

Newton form of the interpolation polynomial

We prefer to use the Newton formula which consists in writing the interpolation polynomial P_n at points x_0, x_1, \ldots, x_n under the form

$$
P_n(x) = a_0 + a_1 (x - x_0) + \ldots + a_n (x - x_0) (x - x_1) \ldots (x - x_{n-1})
$$

Advantages

- we can use the stable Hörner algorithm to evaluate this polynomial
- If we know P_{n-1} , it is sufficient to compute a_n to determine P_n

$$
P_n(x) = P_{n-1}(x) + a_n(x - x_0)(x - x_1)...(x - x_{n-1})
$$

(this is useful most particularly if one point is added!)

The coefficients a_n can be expressed explicitly by *divided differences*

$$
P_n(x) = \sum_{j=0}^n \left(a_j \prod_{i=0}^{j-1} (x - x_i) \right), \quad a_j = f[x_0, x_1, \ldots, x_j]
$$

where f [.] are the divided differences of f such as

$$
f[x_0, x_1, \ldots, x_j] = \frac{f[x_1, \ldots, x_j] - f[x_0, \ldots, x_{j-1}]}{x_j - x_0}.
$$

The recursion begins with $f[\mathsf{x}_j] = f(\mathsf{x}_j), \ \forall j \in \{0,n\}$ (see implementation exercise)

Remark

Although the interpolating polynomial is unique, it can be written in different forms

1. [Overview](#page-2-0)

2. [Polynomial interpolation](#page-4-0)

[Review: stable evaluation of a polynomial](#page-5-0) [Lagrange interpolation](#page-8-0) [Newton form of the interpolant](#page-14-0) [Error in interpolation](#page-17-0)

3. [Polynomial approximation theory](#page-23-0) [Least squares problem](#page-24-0) [Orthogonal polynomials](#page-26-0)

Error measure for polynomial interpolation

Since one of the goals of the interpolation is to replace the evaluation of $f(x)$ by $P_n(x)$, an important point is to measure the error

$$
E_n(x) = f(x) - P_n(x), \quad x \in [a, b]
$$

Can we approach a continuous function f by its Lagrange polynomial interpolant?

If f has $n+1$ bounded derivatives.

$$
E_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x-x_i), \ \xi_x \in [a, b]
$$

Example

- Sinusoïdal function on $[-\pi, \pi]$, equidistant points
- $x \mapsto 1/(1 + x^2)$ on $[-a, a]$, equidistant points

Theorem

Let $f : [a, b] \longrightarrow \mathbb{R}$, $n + 1$ times continuously differentiable and P_n the Lagrange interpolation polynomial at points $x_0, x_1, ..., x_n$ in [a, b]. Then

$$
|f(x) - P_n(x)| \leq \frac{M_{n+1}}{(n+1)!} |\pi_n(x)|
$$

where

$$
M_{n+1} = \max_{a \le x \le b} \left| f^{(n+1)}(x) \right|
$$

and

$$
\pi_n(x)=\prod_{i=0}^n(x-x_i).
$$

Example

- $f(x) = \sin(x)$ for $x \in [a, b]$
	- we have $M_{n+1} < 1$
	- $\bullet\,$ we also can easily obtain the upper bound $|\pi_n(x)|\leq (b-a)^{n+1}$ (for any choice of the $n + 1$ points x_i)
	- then

$$
\forall x \in [a, b], \quad |f(x) - P_n(x)| \leq \frac{(b-a)^{n+1}}{(n+1)!}
$$

• and, consequently

$$
\lim_{n\to\infty}|f(x)-P_n(x)|=0
$$

Example

 $f(x)=1/(1+x^2)$ for $x\in[-a,a]$

• if the points x_i are equispaced in $[-a, a]$, we can show that

$$
\max_{-a\leq x\leq a}|E_n(x)|< C\frac{e^{-n}}{\sqrt{n}\log n}(2a)^{n+1}
$$

- so if $2a < e$, $E_n(x)$ converges towards 0 with *n*.
- in our simulation $a = 5$ and in this case, the upper bound tends to infinity. We cannot say anything about $E_n(x)$.
- our computation lets to think that E_n does not tends to 0
- and max $|E_n(x)|$ did not converge towards 0 (Runge phenomena)

Choice of the interpolation points

- the error estimates of the theorem shows that the error depends on
	- the $(n + 1)$ -th derivative of f
	- the maximum of the function π_n , which only depends on the x_i
- \bullet We can try to minimize $\max\limits_{a\le x\le b}|\pi_n(x)|$ by a better choice of the points x_i
- choosing equally distributed points is far from being optimal!
- the optimal choice is obtained by the Chebyshev points

$$
x_i = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{(2i+1)\pi}{2n+2}\right), i = 0, 1, ..., n
$$

Another way to avoid Runge phenomena is by piecewise interpolation

• linear, quadratic, spline, nearest neighbourhood, etc.

1. [Overview](#page-2-0)

- 2. [Polynomial interpolation](#page-4-0) [Review: stable evaluation of a polynomial](#page-5-0) [Lagrange interpolation](#page-8-0) [Newton form of the interpolant](#page-14-0) [Error in interpolation](#page-17-0)
- 3. [Polynomial approximation theory](#page-23-0) [Least squares problem](#page-24-0) [Orthogonal polynomials](#page-26-0)

1. [Overview](#page-2-0)

- 2. [Polynomial interpolation](#page-4-0) [Review: stable evaluation of a polynomial](#page-5-0) [Lagrange interpolation](#page-8-0) [Newton form of the interpolant](#page-14-0) [Error in interpolation](#page-17-0)
- 3. [Polynomial approximation theory](#page-23-0) [Least squares problem](#page-24-0) [Orthogonal polynomials](#page-26-0)

Least squares problem

Continuous polynomial least squares approximation

Let f be a continuous function in $[a, b]$ **Goal:** find $\min_{P \in \mathbb{R}_n[X]} \|f - P\|_L^2$ L_2^2 , with $P = \sum_{i=0}^{N} a_i \phi_i(x)$, $\{\phi_i\}$ a basis of $\mathbb{R}_n[X]$. To do so we study the error $\langle f - P, f - P \rangle_{L_2}$

$$
\mathcal{E}(a_0,\ldots,a_n)=\int_a^b\left[f(x)-\sum_{i=0}^N a_i\phi_i(x)\right]^2\,dx
$$

and solve $\frac{\partial \mathcal{E}}{\partial \mathsf{a}_j}=0, \quad \forall j\in\{0,n\}$

We obtain a linear system for the $(a_i)_{i\in\{0,n\}}$

$$
\langle f, \phi_j \rangle = \sum_{i=0}^n a_i \, \langle \phi_i, \phi_j \rangle
$$

1. [Overview](#page-2-0)

- 2. [Polynomial interpolation](#page-4-0) [Review: stable evaluation of a polynomial](#page-5-0) [Lagrange interpolation](#page-8-0) [Newton form of the interpolant](#page-14-0) [Error in interpolation](#page-17-0)
- 3. [Polynomial approximation theory](#page-23-0) [Least squares problem](#page-24-0) [Orthogonal polynomials](#page-26-0)

Definition

A sequence of orthogonal polynomials (finite or infinite) $\phi_0(x), \phi_1(x), \ldots$ is such that

 ϕ_i is of degree i

 $\langle \phi_i, \phi_j \rangle = 0$, if $i \neq j$.

We study the sequences of orthogonal polynomials for a scalar product like

$$
\langle \phi, \psi \rangle_{L_2} = \int_a^b \phi(x) \psi(x) w(x) dx
$$

where w (= weight) is a strictly positive continuous function on [a, b]

Remark: orthogonal polynomials $(w = 1)$ solves the least squares system: $a_j = \frac{\langle f, \phi_j \rangle}{\langle \phi, \phi_j \rangle}$ $\overline{\langle \phi_j, \phi_j \rangle}$

Properties of orthogonal polynomials

Let (ϕ_n) be a sequence of orthogonal polynomials; then

• Any polynomial P of degree less or equal to k writes in a unique way like

$$
P(x) = d_0\phi_0(x) + d_1\phi_1(x) + ... + d_k\phi_k(x) \quad \text{with } d_i = \frac{\langle \phi_i, P \rangle}{\langle \phi_i, \phi_i \rangle}
$$

- If P is of degree $\langle k, \text{ then } \langle P, \phi_k \rangle = 0$
- If A_i designates the coefficient of the term of highest degree of ϕ_i , then we have the three terms short recurrence

$$
\widehat{\phi}_{i+1}(x) = (x - B_i)\widehat{\phi}_i(x) - C_i\widehat{\phi}_{i-1}(x) \text{ where } \widehat{\phi}_i(x) := \frac{\phi_i(x)}{A_i} \text{ (normalized polynomialized polynomial)}.
$$

$$
B_i = \frac{\langle x\widehat{\phi}_i(x), \widehat{\phi}_i(x)\rangle}{\langle \widehat{\phi}_i(x), \widehat{\phi}_i(x)\rangle}, \ C_i = \frac{\langle \widehat{\phi}_i(x), \widehat{\phi}_i(x)\rangle}{\langle \widehat{\phi}_i(x), \widehat{\phi}_{i-1}(x)\rangle}.
$$

• ϕ_i has exactly *i* real-valued distinct zeroes

Jacobi polynomials

$$
[a, b] = [-1, 1]
$$
 and $w(x) = (1 - x)^{\alpha}(1 + x)^{\beta}$

with $\alpha > -1$ and $\beta > -1$

• $\alpha = \beta = 0$: Legendre polynomials.

$$
(n+1)L_{n+1}(x)=(2n+1)xL_n(x)-nL_{n-1}(x).
$$

• $\alpha = \beta = -\frac{1}{2}$ $\frac{1}{2}$: First-kind Chebyshev polynomials defined by

$$
T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).
$$

• $\alpha = \beta = \frac{1}{2}$ $\frac{1}{2}$: Second-kind Chebyshev polynomials

Laguerre polynomials

$$
[a, b] = [0, +\infty[
$$
 and $w(x) = e^{-x}$

The recursive relation writes:

$$
\mathcal{L}_{n+1}(x)=-\frac{1}{n+1}(x-2n-1)\mathcal{L}_n(x)-n\mathcal{L}_{n-1}(x)
$$

Hermite polynomials

$$
]a, b[=]-\infty, +\infty[\quad \text{and} \quad w(x) = e^{-x^2}
$$

The recursive relation writes:

$$
H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)
$$

Orthogonal polynomials - Best least squares approximation

Theorem

Let $f : [a, b] \to \mathbb{R}$ be such that $\langle f, f \rangle < \infty$ Then, for any $1 \leq k \leq (N-1)$, if $\phi_0, \phi_1, ..., \phi_k$ is a sequence of orthogonal polynomials for the inner product $\langle \cdot \rangle$, there is a unique polynomial function P of the form

$$
P(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + ... + a_k \phi_k(x)
$$

minimizing $\langle f - P, f - P \rangle$. The coefficients are given by

$$
a_i = \frac{\langle \phi_i, f \rangle}{\langle \phi_i, \phi_i \rangle}, \quad i = 0, ..., k.
$$

Example

Find the polynomial P of degree less or equal to 3 that minimizes

$$
\int_{-1}^1 \left(e^x - P(x) \right)^2 dx.
$$

Legendre polynomials in $[-1, 1]$

We use the basis of Legendre polynomials

$$
L_0(x) = 1, L_1(x) = x, L_2(x) = \frac{3}{2}\left(x^2 - \frac{1}{3}\right), L_3(x) = \frac{5}{2}\left(x^3 - \frac{3}{5}x\right).
$$

Determining the coefficients

For $f(x) = e^x$, we compute

$$
\langle f, L_0\rangle = \int_{-1}^1 e^x dx = e - \frac{1}{e} \quad \langle f, L_1\rangle = \int_{-1}^1 xe^x dx = \frac{2}{e}
$$

$$
\langle f, L_2 \rangle = \frac{3}{2} \int_{-1}^1 e^x \left(x^2 - \frac{1}{3} \right) dx = e - \frac{7}{e} \quad \langle f, L_3 \rangle = \frac{5}{2} \int_{-1}^1 e^x \left(x^3 - \frac{3}{5} \right) dx = -5e + \frac{37}{e}.
$$

In addition, we have: $\langle L_i, L_i \rangle = \frac{2}{2i+1}$. Hence, we deduce the polynomial solution

 $P(x) = 1.175201194L_0(x) + 1.10363824L_1(x) + 0.3578143506L_2(x) + 0.07045563367L_3(x).$

Remarks

- orthogonal polynomials have various mathematical properties
- they are useful for developing highly accurate numerical methods (numerical integration, spectral methods, etc.)
- beyond polynomials: trigonometric basis $(1, \cos(kx), \sin(kx))_{k>0}$ leads to Fourier series

1. [Overview](#page-2-0)

- 2. [Polynomial interpolation](#page-4-0) [Review: stable evaluation of a polynomial](#page-5-0) [Lagrange interpolation](#page-8-0) [Newton form of the interpolant](#page-14-0) [Error in interpolation](#page-17-0)
- 3. [Polynomial approximation theory](#page-23-0) [Least squares problem](#page-24-0) [Orthogonal polynomials](#page-26-0)

Polynomial least square data fit

We are given a set of data $(y_i)_{1 \le i \le m}$, with possibly $m \gg n$, and want to solve the minimization problem

$$
\min_{c} \sum_{i=1}^{m} \left(y_i - \hat{f}(x_i, c) \right)^2
$$

where the unknowns are the coefficients $(c_i)_{1\leq i\leq n}$ from a polynomial basis

$$
\hat{f}(x,c)=\sum_{j=1}^n c_j\phi_j(x)
$$

We try the monomial basis such that $\phi_j(\mathsf{x})=\mathsf{x}^{(j-1)},\ j\in[1,n].$ The polynomial degree n should be large enough to contain information but not too large to avoid spurious noise.

Example

Linear regression with
$$
\hat{f}(x, c) = c_1x + c_2
$$

Remarks

- if $m = n$, we have interpolation
- we study the discrete analogue of the continuous least square problem
- there are other choices to measure the error, based on different distances
	- the maximum norm:

$$
\max_{0\leq i\leq m}|y_i-\sum_{1\leq j\leq n}c_j\phi_j(x_i)|.
$$

• the absolute value norm:

$$
\sum_{0\leq i\leq m}|y_i-\sum_{1\leq j\leq n}c_j\phi_j(x_i)|.
$$

This will lead different solutions for the $(c_i)_{1\leq i\leq n}$. We focus on the Euclidean distance because it leads a linear problem.

The problem for the *p*-norm writes

$$
\min_c \|Ac - y\|_p^2
$$

with $(A_{ii}) = \phi_i(x_i)$ is a $m \times n$ matrix, sampling the data on the chosen polynomial basis.

Normal equations

$$
E(c)=\sum_{0\leq i\leq m}(y_i-\sum_{1\leq j\leq n}c_j\phi_j(x_i))^2.
$$

with $c = (c_1, c_2, ..., c_n)$. if E has a minimum in c, then

$$
\frac{\partial E}{\partial c_i}(c) = 0, \quad \forall \ i = 1, ..., m
$$

which writes

$$
2\sum_{0\leq i\leq m}\phi_j(x_i)(y_i-(c_1\phi_1(x_i)+...+c_n\phi_n(x_i)))=0, \forall i=1,...,m
$$

which are called the normal equations. In matrix form, we have

$$
2A^{T}(Ac - y) = 0 \Leftrightarrow A^{T}Ac = A^{T}y
$$

Remarks

- $\bullet\,$ the matrix A^TA is of size $\,n\times n$
- $\bullet\,$ if A has full column rank, A^TA is symmetric positive definite and we have a unique minimizer
- A is usually badly conditioned
- The number of data m might be very large and/or noisy
- The method is not restricted to a polynomial basis
- There are various ways to solve the normal equation (see Chapter on linear systems)

Polynomial interpolation :

- 1. Global polynomial interpolation (Lagrange interpolant) Error study: Runge phenomena, Chebychev points
- 2. Local interpolation follows the same ideas (see exercises) Higher degree local interpolation requires more data (new point, derivative(s), ...) ⇒ more unknowns to be solved

Approximation theory :

- 1. Orthogonal polynomials are an important building block for advanced numerical methods
- 2. Discrete least-squares is an example of convex optimization, and is a starting point for advanced topics (non-linearity, machine learning, , etc.)