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Overview of the content

Polynomial interpolation is an important building block of numerical analysis.
We try to fit a polynomial P of degree ≤ n that exactly pass by n + 1 given points

yi = P(xi ), i ∈ {0, n}.

It is a special case of approximation: find a simpler function P (we focus on polynomials) that
is the closest to f with respect to some distance

• We can study the interpolation error, where we have more liberty to choose the xi
• We do not need P to pass through xi , but only capture the main trend of f : least squares

If we have a lot of data (xi , yi ), i ∈ {0,m} with m ≫ n, we can try to fit the data to a
polynomial P of lower degree n, we talk about discrete least squares.
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Polynomial evaluation

Let P be a polynomial of degree n

P (x) = anx
n + an−1x

n−1 + ...+ a2x
2 + a1x + a0,

that we want to evaluate at a point x = ξ

• one algorithm consists in computing each product anξ
n and next summing.

• but this technique is generally not used
• because of the errors that it generates (cf last week exercise)
• the number of elementary operations is too large, most particularly when n ≫ 1: n(n + 1)/2

multiplications and n additions → O(n2) operations.

• the Hörner algorithm is generally preferred
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Polynomial evaluation

Let P a polynomial of degree n

P (x) = anx
n + an−1x

n−1 + ...+ a2x
2 + a1x + a0,

that we want to evaluate at a point x = ξ

Hörner algorithm

The Hörner algorithm is based on the following factorization

P (x) = a0 + x (a1 + x (a2 + x (a3 + . . . x (an−2 + x(an−1 + xan)) . . .)))

This algorithm requires n additions and n multiplications → O(n) operations
It has a convenient recursive form
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Lagrange interpolation

The interpolation problem

Let (yi , xi ) be n + 1 distinct points x0, x1, ...xn and y0, y1, ...yn on the interval [a, b].
The goal is to build a polynomial P of degree less or equal to n such that

P(xi ) = yi ∀i = 0, 1, . . . , n
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Theorem

There exists one and only one polynomial Pn of degree less or equal to n satisfying

Pn(xi ) = yi ∀i = 0, 1, . . . , n

which writes

Pn(x) =
n∑

i=0

yi Li (x) with Li (x) =
n∏

k=0 k ̸=i

(x − xk)

(xi − xk)
.

• This polynomial Pn is called Lagrange interpolation polynomial at the points x0, x1, ..., xn.

• The polynomials Li (x) are the Lagrange basis functions associated to the points xi .
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Proof
• Existence
The polynomial function Pn is a polynomial of degree n. Since Li (xj) = δij , it satisfies

Pn(xi ) = yi ∀i = 0, 1, . . . , n

• Uniqueness
Let Q be another polynomial function solution to the problem. Then ∀i = 0, 1, ...n

Q(xi )− P(xi ) = 0 ∀i = 0, 1, . . . , n.

Therefore Q − P is a polynomial function of degree less or equal to n which is zero at
n + 1 points. As a consequence, this polynomial is identically zero.
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Example

With two points n = 1

P1(x) = y0
(x − x1)

(x0 − x1)
+ y1

(x − x0)

(x1 − x0)

which can also be written

P1(x) = y0 +
y1 − y0
x1 − x0

(x − x0) .

Example

Find the interpolating polynomial for

(x0, x1, x2) = (0, 2, 3), (y0, y1, y2) = (1, 5,−2)

Step 1: look for the 2nd order Lagrange basis (L0, L1, L2) such as Li (xj) = δij .
Step 2: use the theorem to find P2 by linear combination
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Remark

Computing Pn(x) =
∑n

i=0 yi Li (x) requires too much elementary evaluations.

Newton form of the interpolation polynomial

We prefer to use the Newton formula which consists in writing the interpolation polynomial Pn

at points x0, x1, ...xn under the form

Pn(x) = a0 + a1 (x − x0) + ...+ an (x − x0) (x − x1) ... (x − xn−1)

Advantages

• we can use the stable Hörner algorithm to evaluate this polynomial

• If we know Pn−1, it is sufficient to compute an to determine Pn

Pn(x) = Pn−1(x) + an (x − x0) (x − x1) ... (x − xn−1)

(this is useful most particularly if one point is added!)
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Newton interpolation formula - Divided differences

The coefficients an can be expressed explicitly by divided differences

Pn(x) =
n∑

j=0

(
aj

j−1∏
i=0

(x − xi )

)
, aj = f [x0, x1, . . . , xj ]

where f [.] are the divided differences of f such as

f [x0, x1, . . . , xj ] =
f [x1, . . . , xj ]− f [x0, . . . , xj−1]

xj − x0
.

The recursion begins with f [xj ] = f (xj), ∀j ∈ {0, n} (see implementation exercise)

Remark

Although the interpolating polynomial is unique, it can be written in different forms
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Error measure for polynomial interpolation

Since one of the goals of the interpolation is to replace the evaluation of f (x) by Pn(x), an
important point is to measure the error

En(x) = f (x)− Pn(x), x ∈ [a, b]

Can we approach a continuous function f by its Lagrange polynomial interpolant ?

If f has n + 1 bounded derivatives,

En(x) =
f (n+1)(ξx)

(n + 1)!

n∏
i=0

(x − xi ), ξx ∈ [a, b]

Example

• Sinusöıdal function on [−π, π], equidistant points
• x 7→ 1/(1 + x2) on [−a, a], equidistant points

19 / 40



Error measure for the polynomial interpolation

Theorem

Let f : [a, b] −→ R, n + 1 times continuously differentiable and Pn the Lagrange interpolation
polynomial at points x0, x1, ..., xn in [a, b]. Then

|f (x)− Pn(x)| ≤
Mn+1

(n + 1)!
|πn(x)|

where
Mn+1 = max

a≤x≤b

∣∣∣f (n+1)(x)
∣∣∣

and

πn(x) =
n∏

i=0

(x − xi ).

20 / 40



Example

f (x) = sin(x) for x ∈ [a, b]

• we have Mn+1 ≤ 1

• we also can easily obtain the upper bound |πn(x)| ≤ (b − a)n+1 (for any choice of the
n + 1 points xi )

• then

∀x ∈ [a, b] , |f (x)− Pn(x)| ≤
(b − a)n+1

(n + 1)!

• and, consequently
lim
n→∞

|f (x)− Pn(x)| = 0
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Example

f (x) = 1/(1 + x2) for x ∈ [−a, a]

• if the points xi are equispaced in [−a, a], we can show that

max
−a≤x≤a

|En(x)| < C
e−n

√
n log n

(2a)n+1

• so if 2a < e, En(x) converges towards 0 with n.

• in our simulation a = 5 and in this case, the upper bound tends to infinity. We cannot say
anything about En(x).

• our computation lets to think that En does not tends to 0

• and max
|x |≤5

|En(x)| did not converge towards 0 (Runge phenomena)
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Choice of the interpolation points

• the error estimates of the theorem shows that the error depends on
• the (n + 1)-th derivative of f
• the maximum of the function πn, which only depends on the xi

• We can try to minimize max
a≤x≤b

|πn(x)| by a better choice of the points xi

• choosing equally distributed points is far from being optimal!

• the optimal choice is obtained by the Chebyshev points

xi =
a+ b

2
+

b − a

2
cos

(
(2i + 1)π

2n + 2

)
, i = 0, 1, ..., n

Another way to avoid Runge phenomena is by piecewise interpolation

• linear, quadratic, spline, nearest neighbourhood, etc.
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Least squares problem

Continuous polynomial least squares approximation

Let f be a continuous function in [a, b]
Goal: find min

P∈Rn[X ]
∥f − P∥2L2 , with P =

∑N
i=0 aiϕi (x), {ϕi} a basis of Rn[X ].

To do so we study the error ⟨f − P, f − P⟩L2

E(a0, . . . , an) =
∫ b

a

[
f (x)−

N∑
i=0

aiϕi (x)

]2
dx

and solve ∂E
∂aj

= 0, ∀j ∈ {0, n}

We obtain a linear system for the (aj)j∈{0,n}

⟨f , ϕj⟩ =
n∑

i=0

ai ⟨ϕi , ϕj⟩
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Orthogonal polynomials

Definition

A sequence of orthogonal polynomials (finite or infinite) ϕ0(x), ϕ1(x), . . . is such that

ϕi is of degree i

⟨ϕi , ϕj⟩ = 0, if i ̸= j .

We study the sequences of orthogonal polynomials for a scalar product like

⟨ϕ, ψ⟩L2 =
∫ b

a
ϕ(x)ψ(x)w(x)dx

where w (= weight) is a strictly positive continuous function on ]a, b[

Remark: orthogonal polynomials (w = 1) solves the least squares system: aj =
⟨f ,ϕj⟩
⟨ϕj ,ϕj⟩

28 / 40



Properties of orthogonal polynomials

Let (ϕn) be a sequence of orthogonal polynomials; then
• Any polynomial P of degree less or equal to k writes in a unique way like

P(x) = d0ϕ0(x) + d1ϕ1(x) + ...+ dkϕk(x) with di =
⟨ϕi ,P⟩
⟨ϕi , ϕi ⟩

• If P is of degree < k, then ⟨P, ϕk⟩ = 0
• If Ai designates the coefficient of the term of highest degree of ϕi , then we have the three

terms short recurrence

ϕ̂i+1(x) = (x − Bi )ϕ̂i (x)− Ci ϕ̂i−1(x) where ϕ̂i (x) :=
ϕi (x)

Ai
(normalized polyn.)

Bi =

〈
x ϕ̂i (x), ϕ̂i (x)

〉
〈
ϕ̂i (x), ϕ̂i (x)

〉 , Ci =

〈
ϕ̂i (x), ϕ̂i (x)

〉
〈
ϕ̂i (x), ϕ̂i−1(x)

〉 .
• ϕi has exactly i real-valued distinct zeroes
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Standard examples of orthogonal polynomials

Jacobi polynomials

[a, b] = [−1, 1] and w(x) = (1− x)α(1 + x)β

with α > −1 and β > −1

• α = β = 0 : Legendre polynomials.

(n + 1)Ln+1(x) = (2n + 1)xLn(x)− nLn−1(x).

• α = β = −1
2 : First-kind Chebyshev polynomials defined by

Tn+1(x) = 2xTn(x)− Tn−1(x).

• α = β = 1
2 : Second-kind Chebyshev polynomials
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Standard examples of orthogonal polynomials

Laguerre polynomials

[a, b[ = [0,+∞[ and w(x) = e−x

The recursive relation writes:

Ln+1(x) = − 1

n + 1
(x − 2n − 1)Ln(x)− nLn−1(x)

Hermite polynomials

]a, b[ = ]−∞,+∞[ and w(x) = e−x2

The recursive relation writes:

Hn+1(x) = 2xHn(x)− 2nHn−1(x)
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Orthogonal polynomials - Best least squares approximation

Theorem

Let f : [a, b] → R be such that ⟨f , f ⟩ <∞ Then, for any 1 ≤ k ≤ (N − 1), if ϕ0, ϕ1, ..., ϕk is a
sequence of orthogonal polynomials for the inner product ⟨.⟩, there is a unique polynomial
function P of the form

P(x) = a0ϕ0(x) + a1ϕ1(x) + ...+ akϕk(x)

minimizing ⟨f − P, f − P⟩. The coefficients are given by

ai =
⟨ϕi , f ⟩
⟨ϕi , ϕi ⟩

, i = 0, ..., k.
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Example

Find the polynomial P of degree less or equal to 3 that minimizes∫ 1

−1

(ex − P(x))2 dx .

Legendre polynomials in [−1, 1]

We use the basis of Legendre polynomials

L0(x) = 1, L1(x) = x , L2(x) =
3

2

(
x2 − 1

3

)
, L3(x) =

5

2

(
x3 − 3

5
x

)
.
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Determining the coefficients

For f (x) = ex , we compute

⟨f , L0⟩ =
∫ 1

−1

exdx = e − 1

e
⟨f , L1⟩ =

∫ 1

−1

xexdx =
2

e

⟨f , L2⟩ =
3

2

∫ 1

−1

ex
(
x2 − 1

3

)
dx = e − 7

e
⟨f , L3⟩ =

5

2

∫ 1

−1

ex
(
x3 − 3

5

)
dx = −5e +

37

e
.

In addition, we have: ⟨Li , Li ⟩ = 2
2i+1 . Hence, we deduce the polynomial solution

P(x) = 1.175201194L0(x) + 1.10363824L1(x) + 0.3578143506L2(x) + 0.07045563367L3(x).

Remarks
• orthogonal polynomials have various mathematical properties

• they are useful for developing highly accurate numerical methods (numerical integration,
spectral methods, etc.)

• beyond polynomials: trigonometric basis (1, cos(kx), sin(kx))k>0 leads to Fourier series
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Polynomial least square data fit

We are given a set of data (yi )1≤i≤m, with possibly m ≫ n, and want to solve the
minimization problem

min
c

m∑
i=1

(
yi − f̂ (xi , c)

)2
where the unknowns are the coefficients (cj)1≤j≤n from a polynomial basis

f̂ (x , c) =
n∑

j=1

cjϕj(x)

We try the monomial basis such that ϕj(x) = x (j−1), j ∈ [1, n]. The polynomial degree n
should be large enough to contain information but not too large to avoid spurious noise.

Example

Linear regression with f̂ (x , c) = c1x + c2
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Remarks
• if m = n, we have interpolation

• we study the discrete analogue of the continuous least square problem
• there are other choices to measure the error, based on different distances

• the maximum norm:
max

0≤i≤m
|yi −

∑
1≤j≤n

cjϕj(xi )|.

• the absolute value norm: ∑
0≤i≤m

|yi −
∑

1≤j≤n

cjϕj(xi )|.

This will lead different solutions for the (cj)1≤j≤n. We focus on the Euclidean distance
because it leads a linear problem.

The problem for the p-norm writes
min
c

∥Ac − y∥2p

with (Aij) = ϕj(xi ) is a m × n matrix, sampling the data on the chosen polynomial basis.
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Normal equations

E (c) =
∑

0≤i≤m

(yi −
∑

1≤j≤n

cjϕj(xi ))
2.

with c = (c1, c2, ..., cn). if E has a minimum in c , then

∂E

∂ci
(c) = 0, ∀ i = 1, ...,m

which writes

2
∑

0≤i≤m

ϕj(xi ) (yi − (c1ϕ1(xi ) + ...+ cnϕn(xi ))) = 0,∀ i = 1, ...,m

which are called the normal equations. In matrix form, we have

2AT (Ac − y) = 0 ⇔ ATAc = AT y
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Remarks

• the matrix ATA is of size n × n

• if A has full column rank, ATA is symmetric positive definite and we have a unique
minimizer

• A is usually badly conditioned

• The number of data m might be very large and/or noisy

• The method is not restricted to a polynomial basis

• There are various ways to solve the normal equation (see Chapter on linear systems)
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Summary of the contents

Polynomial interpolation :

1. Global polynomial interpolation (Lagrange interpolant)
Error study: Runge phenomena, Chebychev points

2. Local interpolation follows the same ideas (see exercises)
Higher degree local interpolation requires more data (new point, derivative(s), ...)
⇒ more unknowns to be solved

Approximation theory :

1. Orthogonal polynomials are an important building block for advanced numerical methods

2. Discrete least-squares is an example of convex optimization, and is a starting point for
advanced topics (non-linearity, machine learning, , etc.)
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