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Introduction

So far, we have seen methods to perform interpolation, differentiation and integration.
We will go a step further and study methods to solve ordinary differential equations (ODEs)

y ′(t) = f (t, y(t)), y(t0) = y0, t ∈ I = [t0,T ]

We will address theoretical and numerical questions

• Does the ODE have a (unique) solution ? What is the nature of the solution (oscillatory,
stiff, divergent, etc.) ?

• Does the numerical solution converges to the exact solution ?

• What is the accuracy/cost of the method ?
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A famous example - The Lorenz system

Atmospheric convection, the “Butterfly effect”

x ′(t) = σ(y(t)− x(t))

y ′(t) = x(t)(ρ− z)− y(t)

z ′(t) = x(t)y(t)− βz(t)

Numeric test: ρ = 28, σ = 10, β = 8/3,
(x0, y0, z0) = (1, 1, 1), T = 40, t0 = 0

https://matplotlib.org/stable/gallery/mplot3d/lorenz_attractor.html
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Definitions

• A first-order ODE is an equation of the form

y ′(t) = f (t, y(t)) , ∀ t ∈ I

where I is an interval of R, y : [0,+∞[→ RN is a vectorial function depending on the
variable t and f is a map from I × RN onto RN .

• An ODE of order p is an equation of the form

y (p)(t) = f
(
t, y(t), y ′(t), . . . , y (p−1)(t)

)
, ∀ t ∈ I

where I is an interval of R, y : [0,+∞[→ RN is a vectorial function with respect to t and
f is an application from I × (RN)p to RN .
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Remark

Any ODE of order p can be written as a first-order ODE.

Indeed, by setting

x1(t) = y(t), x2(t) = y ′(t), x3(t) = y ′′(t), . . . , xp(t) = y (p−1)(t)

the problem writes

x ′1(t) = x2(t), x ′2(t) = x3(t), . . . , x
′
p−1(t) = xp(t)

and
x ′p(t) = f (t, x1(t), x2(t), . . . , xp(t))
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Remark

which can be written, by setting

X (t) =


x1(t)
x2(t)
...

xp(t)

 and F (t,X ) =


X2

X3
...

f (t, x1, x2, . . . , xp)


X ′(t) = F (t,X (t))

Example

Consider y ′′(t) + ω2y(t) = g(t). Define x1 = y , x2 = y ′, such as

X ′(t) =

(
x ′1
x ′2

)
=

(
0 1

−ω2 0

)(
x1
x2

)
+

(
0

g(t)

)
=

(
x2

−ω2x1 + g(t)

)
= F (t,X (t))
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Definition - Initial value problem

• For an interval I , f : I × RN → RN , t0 ∈ I and y0 ∈ RN , solving the Cauchy problem{
y ′(t) = f (t, y(t)) , ∀ t ∈ I
y(t0) = y0

means to determine all functions y : I → RN solutions to the ODE satisfying y(t0) = y0.

We also talk about Initial Value Problem (IVP)

Stability of first order IVP

If f is continuous in t and Lipschitz continuous in y , i.e. |∂y f (t, y)| ≤ L for t ∈ I ,
then the IVP has a unique solution in I . Moreover for two solutions (y1, y2) with different
initial conditions we have

|y1(t)− y2(t)| ≤ eL(t−t0)|y1(t0)− y2(t0)|

9 / 75



A simple example

• For a ∈ R, the IVP {
y ′(t) = ay(t), ∀t > 0
y (0) = y0

has the unique solution y (t) = y0e
at

• more generally, if a is a continuous function on [0,+∞[, the IVP has the solution

y (t) = y0 exp

(∫ t

0
a (σ) dσ

)

Difference in two solutions that start at nearby points for y ′ = ty (left) and y ′ = −ty (right)
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Numerical Approximation

We try to numerically solve the IVP, which means that we look for an approximate solution to{
y ′(t) = f (t, y(t)) , 0 ≤ t ≤ T
y (0) = y0

with y0 ∈ RN and f : [0,+∞[×RN → RN

We remark that this problem is equivalent to

y(t) = y0 +

∫ t

0
f (s, y(s))ds ∀ t ∈ [0,T ]

Therefore, it is sufficient to obtain a numerical approximation to∫ t

0
f (s, y(s))ds

and, to this end we can use the ideas and methods from numerical integration.
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Numerical Approximation

For a subdivision
0 = t0 < t1 < t2 < . . . < tN = T

our problem implies that y(tn+1) = y(tn) +

∫ tn+1

tn

f (t, y(t))dt, ∀ 0 ≤ n ≤ N − 1

y(0) = y0

The numerical methods differ by the choice of the evaluation of the integrals∫ tn+1

tn

f (t, y(t))dt

Remark

The integrand depends on y itself, which makes the integration more complicated
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The forward Euler method

• let us assume that our Cauchy problem admits one solution y on [0,T ].
• we introduce the subdivision 0 = t0 < t1 < . . . < tN = T and hn = tn+1 − tn
• Let us recall that our problems imply y(tn+1) = y(tn) +

∫ tn+1

tn

f (t, y(t))dt, ∀ 0 ≤ n ≤ N − 1

y(0) = y0

• the forward Euler method (explicit) corresponds to an approximation by the left rectangle
quadrature rule ∫ tn+1

tn

f (t, y(t))dt ≃ hnf (tn, y(tn)).

• we then obtain, where ỹn is an approximation of y(tn),{
ỹn+1 = ỹn + hnf (tn, ỹn), ∀ 0 ≤ n ≤ N − 1
y0 = ỹ0
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Convergence

It is necessary to analyze in which sense the computed value ỹn is sufficiently close to the
exact value y(tn) and so we want to evaluate the discretization error

en = y(tn)− ỹn.

Definition

we say that the method is converging if

max
0≤n≤N

|en|

tends towards 0 when h → 0 and ỹ0 → y(t0).

Remark

If the method is converging, by choosing h sufficiently small, and ỹ0 close to y(t0), we obtain
a good approximation of y (tn) , n = 0, ...,N
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Convergence

Remarks
• it seems more natural to directly set ỹ0 = y(t0) in our scheme. However, in practice, if

y(t0) is real-valued, it cannot be considered as exact (meaning in exact arithmetic)
because of the round-off errors (on a computer). A correct analysis assumes ỹ0 ̸= y0

• like any computation, a stability problem arises:
it is necessary to understand the consequences on the computation of small variations of
ỹ0 and f (tn, ỹn).
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Consistency

We first introduce a notion called consistency of a numerical scheme:
the consistency error represents the error at the n-th step when replacing the ODE by the
discrete equation

εn = y (tn+1)− y (tn)− hnf (tn, y (tn)) .

εn is sometimes called the local truncation error

Definition

A method is said to be consistent if

lim
h→0

N−1∑
n=0

∥εn∥ = 0.

Remark: consistency is a local notion, it supposes that the previous data are known exactly.
On the other hand, stability relates to the propagation of local errors
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Stability

Definition

We say that a method is stable if there exists a constant K such that

max
n

∥ỹn − z̃n∥ ≤ K

[
∥ỹ0 − z̃0∥+

N−1∑
n=0

∥εn∥

]

for any z̃n solution to

z̃n+1 = z̃n + hnf (tn, z̃n) + εn, n = 0, ...,N − 1.

This notion of stability implies that small perturbations on the initial data and all the
intermediate calculations leads to small perturbations on the final result
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Back to convergence

stability of the forward Euler scheme
+

consistency of the forward Euler scheme
=

convergence of the forward Euler scheme

Remark:

It can be shown that, more generally, for a one-step method, consistency and stability imply
convergence.

Convergence of Euler’s method

The forward Euler method is convergent. If f is Lipschitz and continuous one can show

max
0≤n≤N

|en| ≤ eLT (hMT + ∥e0∥)
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Example {
y ′ (t) = 3y (t)− 3t t ∈ [0, 5]
y (0) = 1

3

• the solution is y (t) = 1
3 + t

• now, if we consider the same problem but with the intial data z(0) = 1
3 + ϵ, the solution

is z(t) = 1
3 + t + ϵe3t

• as a consequence, z(5) = y(5) + ϵe15 ≃ y(5) + 3ϵ106

• therefore, if one works with a computer with a round-off error equal to 10−6, it will be
impossible to approximate y(5), and this, independently of the numerical method

• the problem is ill-conditioned
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Example {
y ′ (t) = −150 y (t) + 50
y (0) = 1

3

• the solution is y (t) = 1
3

• here, the problem is well-conditioned. Indeed, if one introduces a perturbation ϵ on the
initial data we have

|y(t)− z(t)| ≤ ϵe−150t , ∀ t ≥ 0

• the forward Euler method leads to

yn+1 = yn + hn(−150yn + 50)

that is

yn+1 −
1

3
= (1− 150hn)

(
yn −

1

3

)
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• for a constant step hn = h = 1
50 , we have

yn+1 −
1

3
= (1− 150h)n

(
y0 −

1

3

)
= (−2)n

(
y0 −

1

3

)
• in particular

y50 − y(0) = (−2)50
(
y0 −

1

3

)
≃ 1015

(
y0 −

1

3

)
!

• this shows that the step size is too large. On the other hand, if it is taken smaller, we will
have round-off errors!

• the forward Euler scheme is a numerically unstable scheme.
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Example {
y ′ (t) = −λy (t) λ > 0
y (0) = y0

• the solution to this problem is y(t) = y0e
−λt

• the problem is well-conditioned. Indeed, for a small ϵ on the initial data, one gets

|y(t)− z(t)| ≤ ϵe−λt , ∀ t ≥ 0

• the forward Euler method applied to this problem with a constant step size h gives

yn+1 = yn − λhyn = (1− λh)yn

and so
yn = (1− λh)ny0
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yn = (1− λh)ny0

• even if the exact solution remains bounded

|y(t)| ≤ |y0| ∀ t ≥ 0

we see that if |1− λh| > 1 then the computed solution yn will have a growing amplitude,
leading to an unstable scheme

• the absolute stability condition (CFL:=Courant-Friedrichs-Lewy) writes

λh < 2

• hence, the larger λ is, the smaller h must be.

• but if h is too small, then round-off errors appear !

• Stability conditions can be analyzed in the complex plane for many ODE methods
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The backward Euler scheme (implicit)

To solve the instability problem, we often use an implicit scheme like{
yn+1 = yn + hnf (tn+1, yn+1) ∀ 0 ≤ n ≤ N − 1
y0 = ỹ0

It comes from the approximation of ∫ tn+1

tn

f (t, y (t)) dt

by the right rectangular quadrature rule∫ tn+1

tn

f (t, y (t)) dt ≃ hnf (tn+1, y(tn+1))
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The relation
yn+1 = yn + hnf (tn+1, yn+1)

defines yn+1 in an implicit way.

• this method is therefore more complicate to use than a forward Euler scheme

• at each iteration, this equation must be solved. Does it admit a solution? Is it unique?

• generally, the numerical solution to this equation requires the use of an iterative method
(Newton, fixed point,...)
→ see Lecture on nonlinear equations

• the cost of one iteration is then higher than for the forward Euler scheme (which is
explicit).

• however, the stability is greatly improved
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Back to the example

Example {
y ′ (t) = −λy (t) λ > 0
y (0) = y0

• we have, for a constant step h, yn+1 = yn − λhyn+1 that is

yn+1 =
yn

(1 + λh)

which also writes
yn =

y0
(1 + λh)n

• in particular, we have λ > 0 and for h > 0, |yn| ≤ |y0|.
• furthermore, we can prove that this method converges as the previous one.
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General study of one-step methods

A one-step method can be written in a general way as{
yn+1 = yn + hnΦ(tn, yn, hn), ∀ n ∈ J0,N − 1K
y0 = ỹ0

• the approximation yn+1 of y(tn+1) is therefore obtained uniquely from tn, hn and yn the
approximation of y(tn) obtained at the previous time step.

• this method can be implicit or explicit
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General study of one-step methods

A one-step method can be written in a general way as{
yn+1 = yn + hnΦ(tn, yn, hn), ∀ n ∈ J0,N − 1K
y0 = ỹ0

Example

• forward Euler scheme: yn+1 = yn + hnf (tn, yn). Here

Φ(t, y , h) = f (t, y)

Φ is independent of h.

• backward Euler scheme : yn+1 = yn + hnf (tn+1, yn+1). Here

Φ(t, y , h) = f (t + h, k)

with k solution to k = y + hf (t + h, k)
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Order of accuracy

We now define the notion of order of accuracy of a one-step method

Definition

A one-step method is said to be of order p (p > 0), if for any solution y of y ′(t) = f (t, y(t))
such that y ∈ Cp+1([t0, t0 + T ]), there exists a real-valued parameter K which only depends
on y and Φ such that

N−1∑
n=0

∥εn∥ ≤ Khp

with εn being the local truncation error

εn = y(tn+1)− y(tn)− hnΦ(tn, y(tn), hn)
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Theorem

If a one-step method is stable and of order p and if f ∈ Cp([t0, t0 + T ]× Rn), then we have

∥y(tn)− ỹn∥ ≤ M [∥y(t0)− ỹ0∥+ Khp] ∀n ∈ J0,NK

Examples:

• the forward and backward Euler schemes are first-order

• let us consider the more general methods
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Runge-Kutta methods

• First-order methods require too much computational time to get a given accuracy

• It is then necessary to use a high-order method: the most known are Runge-Kutta
methods that consist in using high-order numerical integration rules to approximate∫ tn+1

tn

f (t, y(t))dt

which use intermediate points between tn and tn+1
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Runge-Kutta methods

Let (cj , bj) be an elementary quadrature formula with s stages:∫ 1

0
g(x)dx =

s∑
j=1

bjg(cj)

Then

y(tn+1) ≃ y(tn) + hn

s∑
i=1

biki

with tn,i = tn + hnci , ki = f (tn,i , y(tn,i ))

Problem

How to evaluate ki = f (tn,i , y(tn,i )) if y(tn,i ) is not known?
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Runge-Kutta methods

The values y(tn,i ) are also evaluated through some numerical integration formulae by using
the same points tn,i

y(tn,i ) ≃ y(tn) + hn

s∑
j=1

ai ,j f (tn,j , y(tn,j)) ∀ i ∈ J1, sK

The Runge-Kutta methods consists in replacing ≃ by =
y(tn,j) are given at other intermediates points where it can be evaluated !
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Runge-Kutta methods

Remarks
• if the matrix (ai ,j) is strictly lower triangular, then the RK method define explicitly the
values of yn,j , otherwise implicitly.

• the method is a one-step method. Indeed, this scheme can be written as

yn+1 = yn + hnΦ(tn, yn, hn)

where Φ(., ., .) is the function defined by the equations

Φ(tn, yn, hn) =
s∑

i=1

biki , ki = f (tn + cihn, yn + hn

s∑
j=1

ai ,jkj) ∀ i ∈ J1, sK
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Example of Runge-Kutta method

• Explicit midpoint method: we take the midpoint formula

y(tn+1) ≃ y(tn) + hnf

(
tn +

hn
2
, y(tn +

hn
2
)

)
and we replace the unknown value y(tn +

hn
2 ) by the Euler method

y(tn +
hn
2
) ≃ y(tn) +

hn
2
f (tn, y(tn))

This provides

yn+1 = yn + hnf

(
tn +

hn
2
, yn +

hn
2
f (tn, yn)

)
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Examples of Runge-Kutta methods

• Trapezoidal method: we take the trapezoidal quadrature formula

y(tn+1) ≃ y(tn) +
hn
2

(f (tn, yn) + f (tn+1, yn+1))

which is the implicit trapezoidal method. If we replace the unknown value y(tn+1) by
Euler approximation, we obtain the explicit trapezoidal method

yn+1 = yn +
hn
2

[f (tn, yn) + f (tn+1, yn + hnf (tn, yn))]

= yn +
hn
2

[k1 + k2] ,

with k1 = f (tn, yn), k2 = f (tn + hn, yn + hnk1)
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Butcher Tableaux

A Runge-Kutta method is completely known when we have: s, the coefficients ai ,j , bj and cj .
Usually, we use the following Butcher Tableaux

c1 a1,1 a1,2 . . . a1,s
c2 a2,1 a2,2 . . . a2,s
...

...
...

...
cs as,1 as,2 . . . as,s

b1 b2 . . . bs

Example

Explicit Euler:
0 0

1
, Explicit midpoint:

0 0 0
1
2

1
2 0

0 1

,
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Butcher Tableau for RK4

• Example for RK4: based on Simpson’s rule integration and explicit midpoint rule

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0
1
6

2
6

2
6

1
6

kn,1 = f (tn, yn) kn,2 = f (tn +
hn
2 , yn +

hn
2 kn,1)

kn,3 = f (tn +
hn
2 , yn +

hn
2 kn,2) kn,4 = f (tn+1, yn + hnkn,3)

yn+1 = yn +
hn
6

[kn,1 + 2kn,2 + 2kn,3 + kn,4]
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Further remarks on Runge-Kutta methods

Under some regularity assumptions on f , it can be proved that the Runge-Kutta methods are
stable. Being stable and consistent, they are convergent.

• A RK method with s stages is of order s

• RK methods are costly, they require many function evaluations

• varying step size RK methods can be derived, such as RK23 and RK45

• Implicit RK schemes are costly, we privilege explicit RK in practice
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Multi-step methods

• the one-step methods only use the approximate value yn of y (tn) to compute an
approximate value yn+1 of y (tn+1) .

• the multi-step methods also involve the information obtained at the previous steps
tn−1, tn−2, ..., tn−r .

• we will describe here the Adams methods that consist in replacing f (t, y (t)) by an
interpolation polynomial at points tn−r , tn−r+1, ..., tn−1, tn, (tn+1), in the computation of

y (tn+1) = y (tn) +

∫ tn+1

tn

f (t, y (t)) dt.
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Multi-step methods

• if Pn is this polynomial, the approximate values yn+1 will be obtained by the approximate
equation

yn+1 = yn +

∫ tn+1

tn

Pn (t) dt.

• the formulae will be implicit (explicit, respectively) if tn+1 is (is not, respectively) one of
the interpolation points.
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Adams-Bashforth methods with r + 1 steps

• we assume that we know the approximate values yn of y (tn) and fn, fn−1, ..., fn−r of
f (t, y (t)) respectively at points tn, tn−1, ..., tn−r .

• the polynomial Pn is chosen as the polynomial of degree less or equal to r such that

Pn (tn−i ) = fn−i ∀i = 0, ..., r .

• the approximation of y(tn+1) is then defined by

yn+1 = yn +

∫ tn+1

tn

Pn(t)dt

52 / 75



Adams-Bashforth methods with r + 1 steps

• if one represents the polynomial Pn by the Newton formula

Pn(t) =
r∑

i=0

f [tn, tn−1, . . . , tn−i ]
i−1∏
j=0

(t − tn−j)

the methods becomes

yn+1 = yn +
r∑

i=0

f [tn, tn−1, . . . , tn−i ]

∫ tn+1

tn

i−1∏
j=0

(t − tn−j)dt


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The Adams-Bashforth methods with r + 1 steps

• in the case of a constant step h i.e. tj = t0 + jh, the divided differences can be written as

f [tn, tn−1, . . . , tn−i ] =
∆i fn
i !hi

where

∆i fk =

{
fk if i = 0
∆i−1fk −∆i−1fk−1 if i ≥ 1

are the backward finite differences

• the formula then becomes

yn+1 = yn +
r∑

i=0

∆i fn
i !hi

∫ tn+1

tn

i−1∏
j=0

(t − tn−j)dt


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The Adams-Bashforth methods with r + 1 steps

• now, by setting t = tn + sh, s ∈ [0, 1], we have∫ tn+1

tn

i−1∏
j=0

(t − tn−j)dt = hi+1

∫ 1

0

i−1∏
j=0

(j − s)ds

= hi+1i !

∫ 1

0

(
s + i − 1

i

)
ds

where

(
s
k

)
is the binomial coefficient generalized to non integer values

(
s
k

)
=

s (s − 1) ... (s − k + 1)

1.2...k
.
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The Adams-Bashforth methods with r + 1 steps

• Hence

yn+1 = yn + h
r∑

i=0

γi∆
i fn with γi =

∫ 1

0

(
s + i − 1

i

)
ds

• we show that the γi satisfy the relation

γ0 = 1, 1 =
γ0

i + 1
+

γ1
i
+ ...+

γi−1

2
+ γi

which leads to their recursive computation.

• it is important to notice that they do not depend on r , which is useful when one wants to
make the order r vary in a same computation.

• one then gets

γ0 = 1, γ1 =
1

2
, γ2 =

5

12
, γ3 =

3

8
, γ4 =

251

720
, γ5 =

95

288
.
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The Adams-Bashforth methods with r + 1 steps

• In practice, we prefer to explicitly write the relation as a function of the values of fn−i ,
leading to

yn+1 = yn + h
r∑

i=0

bi ,r fn−i .

• from the finite difference formula, we can check that

br ,r = (−1)r γr , bi ,r = bi ,r−1 + (−1)i
(

r
i

)
γr , 0 ≤ i ≤ r .
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The Adams-Bashforth methods with r + 1 steps

• one gets the following tableaux:

b0,r b1,r b2,r b3,r b4,r b5,r b6,r γr

r = 0 1 1

r = 1 3
2 − 1

2
1
2

r = 2 23
12 − 4

3
5
12

5
12

r = 3 55
24 − 59

24
37
24 − 3

8
3
8

r = 4 1901
720 − 1387

360
109
30 − 637

360
251
720

251
720

r = 5 4277
1440 − 7923

1440
4991
720 − 3649

720
959
480 − 95

288
95
288

r = 6 199441
60840 − 18817

2520
238783
20160 − 10979

945
139313
20160 − 5783

2520
19807
60840

19807
60840
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The Adams-Bashforth methods with r + 1 steps

• for r = 0
yn+1 = yn + hfn (Euler)

• for r = 1

yn+1 = yn +
h

2
(3fn − fn−1)

• for r = 2

yn+1 = yn +
h

12
(23fn − 16fn−1 + 5fn−2)

• for r = 3

yn+1 = yn +
h

124
(55fn − 59fn−1 + 37fn−2 − 9fn−3)
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The Adams-Bashforth methods with r + 1 steps

• this last method (Adams-Bashforth with 4 steps) is usually used.

• if one wishes to apply it to the resolution of our Cauchy problem, we have to know the
four initial approximations y0, y1, y2 and y3. Next, we can use the recursive formula to
compute y4, y5, . . .

• Adams computed the Taylor series of the exact solution around the initial value to
determine the initial approximations that are not known

• clearly, we can also get them by using a one-step method

• this method is of order 4 and is stable under the natural smoothness assumptions on f
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The Adams-Bashforth methods with r + 1 steps

• however, the stability constant are often very large which implies some numerical
instabilities analogous to the one that have been underlined in the case of the forward
Euler scheme

• to overcome this drawback, one uses some implicit methods
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The Adams-Moulton methods with r + 1 steps

• we interpolate the function f (t, y (t)) at points tn+1, tn, ..., tn−r by the polynomial Qn

of degree less or equal to r + 1 such that{
Qn (tn−i ) = fn−i i = 0, 1, ..., r
Qn (tn+1) = fn+1 (the value is still unknown).

• by a similar computation, we obtain

yn+1 = yn + h
r+1∑
i=0

γ∗i ∆
i fn+1

where

γ∗i =

∫ 0

−1

s (s + 1) ... (s + i − 1)

i !
ds, i ≥ 1, γ∗0 = 1.

• we check that
γ∗i = γi − γi−1, i ≥ 1.
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The Adams-Moulton method with r + 1 steps

• as before, we prefer to write

yn+1 = yn + h
r∑

i=−1

b∗i ,r fn−i

where, as it can be easily proved, the b∗i ,r satisfy to

b∗r ,r = (−1)r+1 γ∗r+1, b
∗
i ,r = b∗i ,r−1 + (−1)i+1

(
r + 1
i + 1

)
γ∗r+1.
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The Adams-Moulton method with r + 1 steps

• one gets the tableau

b∗−1,r b∗0,r b∗1,r b∗2,r b∗3,r b∗4,r b∗5,r b∗6,r b∗7,r

r = 0 1
2

1
2 1

r = 1 5
12

2
3 − 1

12 − 1
2

r = 2 9
24

19
24 − 5

24
1
24 − 1

12

r = 3 251
720

323
360 − 11

30
53
360 − 19

720 − 1
24

r = 4 95
288

1427
1440 − 133

240
241
720 − 173

1440
3

160 − 19
720

r = 5 19087
60480

2713
2520 − 15487

20160
586
945 − 6737

20160
263
2520 − 863

60480 − 3
160

r = 6 36799
120960

139849
120960 − 121797

120960
123133
120960 − 88545

120960
41499
120960 − 11351

120960
275

24192 − 863
60480
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The Adams-Moulton methods with r + 1 steps

• for r = 0

yn+1 = yn +
h

2
(fn+1 + fn)

• for r = 1

yn+1 = yn +
h

12
(5fn+1 + 8fn − fn−1)

• for r = 2

yn+1 = yn +
h

24
(9fn+1 + 19fn − 5fn−1 + fn−2)
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The Adams-Moulton methods with r + 1 steps

• this last method (3-steps Adams-Moulton method) is the most commonly used method.

• we show that under some smoothness assumptions this method is of order 4 and stable

• the stability coefficients are much better (smaller) than for the explicit fourth-order
Adams-Bashforth method

• of course, we must pay the price since we implicitly define yn+1 through
fn+1 = f (tn+1, yn+1) .

• a nonlinear system must then be solved.

• to this end, we can consider the following predictor-corrector method
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Predictor-corrector method

• To solve the equation

yn+1 = yn +
h

24
(9f (tn+1, yn+1) + 19fn − 5fn−1 + fn−2)

we can use a successive approximation method (i.e. fixed-point) consisting in building the
sequence ỹ0, ỹ1, ỹ2, ..., ỹp defined by{

ỹp+1 = yn +
h
24 (9f (tn+1, ỹp) + 19fn − 5fn−1 + fn−2)

ỹ0 to choose.

• one can iterate until convergence (in general ỹp converges towards yn+1 when p tends to
infinity)
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Predictor-corrector method

• most of the time, one only iterates a few times, even sometimes 1 or 2.

• in addition, the initial value ỹ0 is often obtained through one step of an explicit method of
the same order

• then, we have a predictor-corrector method : the evaluation of ỹ0 corresponds to a
prediction; this value is then next corrected through one or two iterations of a fixed point
algorithm.

70 / 75



Predictor-corrector method

• finally, the following scheme is often used

Predictor: fourth-order Adams-Bashforth method
ỹ0 = yn +

h
24 (55fn − 59fn−1 + 37fn−2 − 9fn−3)

Corrector: one or two iterations of the Adams-Moulton method
of order 4
ỹp+1 = yn +

h
24 (9f (tn+1, ỹp) + 19fn − 5fn−1 + fn−2) , p = 0, 1.

• we show that this method is also of order 4

• its stability is clearly better than for the Adams-Bashforth scheme

• the solution to the nonlinear system related to the Adams-Moulton formula is finally done
explicitly.
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Backward differentiation formula

A last category of multi-step method consists of evaluating f at the end of the current step
(tn+s , yn+s), and driving an interpolating polynomial for y with the points (tn+s , . . . , tn).
We start from y ′(tn+s) = f (tn+s , y(tn+s)) and use the approximation

p′n,s(tn+s) = f (tn+s , yn+s)

By doing so we end up with BDF schemes of order s

s∑
k=0

akyn+k = hβf (tn+s , yn+s)

Example

BDF1: yn+1 − yn = hf (tn+1, yn+1)
BDF2: yn+2 − 4

3yn+1 +
1
3yn = 2h

3 f (tn+2, yn+2)
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Backward differentiation formula (BDF)

Remarks
• BDF schemes with s stages are of order s

• BDF schemes are implicit

• they are popular for stiff problems because of their stability property

• methods with s > 6 cannot be used
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Summary of the contents

We have seen some numerical methods to solve IVP

1. One-step methods of different orders (Euler, RK)

2. Multi-step methods (AM, AB, BDF)

3. Predictor-corrector methods

They are various differences between the schemes

• The methods can be explicit or implicit, and of different orders of accuracy

• Implicit methods are more stable than explicit methods, but are also more costly

• Usually an adaptive step size solver is necessary

• Writing an efficient ODE solver requires a good knowledge and experience of these
methods
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