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1. Introduction
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Introduction

So far, we have seen methods to perform interpolation, differentiation and integration.
We will go a step further and study methods to solve ordinary differential equations (ODEs)

y'(t) = f(t,y(t), y(to) =y, tel=][to,T]

We will address theoretical and numerical questions
® Does the ODE have a (unique) solution ? What is the nature of the solution (oscillatory,
stiff, divergent, etc.) ?
® Does the numerical solution converges to the exact solution ?

® What is the accuracy/cost of the method ?
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A famous example - The Lorenz system

Lorenz attractor

Atmospheric convection, the “Butterfly effect”

X'(t) = o(y(t) — x(t))
y'(t) = x(t)(p—2) = ¥(1)
Z'(t) = x(t)y(t) — Bz(t)

Numeric test: p =28, 0 =10, § =8/3,
(X05y0720) = (17 17 1), T = 40, to = 0

https://matplotlib.org/stable/gallery/mplot3d/lorenz_attractor.html
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® A first-order ODE is an equation of the form

Y(t)=f(t,y(t)), Vtel

where | is an interval of R, y : [0, +0o[— RN is a vectorial function depending on the
variable t and f is a map from / x RN onto RV.

® An ODE of order p is an equation of the form
YO = £ (£y(1), Y (1), ..y (D), Veel

where / is an interval of R, y : [0, +0o[— RN is a vectorial function with respect to t and
f is an application from / x (RV)P to RV,
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Any ODE of order p can be written as a first-order ODE.

Indeed, by setting
xa(t) = y(1). x(t) = Y/(0). xa(t) = y"(2)..... xp(t) = y*D(1)

the problem writes

and
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which can be written, by setting

Xl(t) X2
X(t) = XZ:(t) and  F(t,X) = %
Xp(t) f(t,x1,x2 Xp)

X'(t) = F (£, X(1))

(t) = g(t). Define x; = y,xo = y/, such as

+wy
¥10= ()= (L o) () * () = (ahgr0) = 10X
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Definition - Initial value problem

® Foraninterval /, f: I x RN - RN t5 €/ and y° € RV, solving the Cauchy problem

{ y'(t) = f(t,y(t), Vtel
yO

means to determine all functions y : I — RN solutions to the ODE satisfying y(to) = yo.
We also talk about Initial Value Problem (IVP)

Stability of first order IVP

If f is continuous in t and Lipschitz continuous in y, i.e. |0,f(t,y)| < L for t € [,
then the IVP has a unique solution in /. Moreover for two solutions (y1, y2) with different
initial conditions we have

ya(t) = ya(2)] < e yi (1) — ya(to)|
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A simple example

® For a € R, the IVP
{ y(t) = ay(t), ¥t >0

has the unique solution y (t) = ype®

® more generally, if a is a continuous function on [0, +oc|, the IVP has the solution

y(t) = yoexp </Ota(a)da>

A=~ NNVV VAV
— =N N NN AV
Fr==~NN NNV Vv
— =N N N VAN
Solm—=~_J NN N
i NN NN NN
—— =Ny NN N

1 erem—— N N
:___-.\

) P ———

Difference in two solutions that start at nearby points for y’ = ty (left) and y' = —ty (righltu)/75



Numerical Approximation

We try to numerically solve the IVP, which means that we look for an approximate solution to

with yo € RN and f : [0, +0o[ xRN — RN
We remark that this problem is equivalent to
t
y() =30+ [ Fls.y(s)ds ¥ eelo.T
0
Therefore, it is sufficient to obtain a numerical approximation to
t
| flsvis)as
0

and, to this end we can use the ideas and methods from numerical integration.
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Numerical Approximation

For a subdivision
O=th<thi<bh<..<ty=T

our problem implies that

tn+1

Y(tns1) = y(ta) + / f(ey()dt, YO<n<N-1
th

y(0) =y

The numerical methods differ by the choice of the evaluation of the integrals

/ (e y(1))de

The integrand depends on y itself, which makes the integration more complicated
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2. Euler methods
The forward Euler method
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The forward Euler method

® let us assume that our Cauchy problem admits one solution y on [0, T].
® we introduce the subdivision 0 =ty < t; < ... <ty =T and h, = tp11 — t,
® | et us recall that our problems imply

tht1
Ytrt) = y(en) + [ FEy(©)de, VO<n<N -1
th

¥(0) = yo
® the forward Euler method (explicit) corresponds to an approximation by the left rectangle
quadrature rule

tht1
/ F(t, y(£))dt ~ bof(tn, y(£2).
tn
® we then obtain, where ¥, is an approximation of y(t,),

{ Vo1 = Jn + haf(tn, 7n), ¥YO0O<n<N-—1
Yo =50
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2. Euler methods

Convergence analysis
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Convergence

It is necessary to analyze in which sense the computed value y, is sufficiently close to the
exact value y(t,) and so we want to evaluate the discretization error

€n = Y(tn) — Vn-

Definition

we say that the method is converging if

max_|ep|
0<n<N

tends towards 0 when h — 0 and Jp — y(to).

If the method is converging, by choosing h sufficiently small, and j close to y(tp), we obtain
a good approximation of y (t,), n=0,..., N
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Convergence

® it seems more natural to directly set yo = y(to) in our scheme. However, in practice, if
y(to) is real-valued, it cannot be considered as exact (meaning in exact arithmetic)
because of the round-off errors (on a computer). A correct analysis assumes Jy # yo

® |ike any computation, a stability problem arises:
it is necessary to understand the consequences on the computation of small variations of

)70 and f (tn7)7n)'
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We first introduce a notion called consistency of a numerical scheme:

the consistency error represents the error at the n-th step when replacing the ODE by the
discrete equation

en =Y (tar1) — ¥ (tn) — hnf (tn, y (tn)) -

€n 1s sometimes called the local truncation error

Definition

A method is said to be consistent if

N—-1
lim " [len]| = 0.
h—0

n=0

Remark: consistency is a local notion, it supposes that the previous data are known exactly.
On the other hand, stability relates to the propagation of local errors
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Stability

Definition
We say that a method is stable if there exists a constant K such that

N-1
150 — Zoll + ||5n||]

n=0

max|§s — 2| < K

for any Z, solution to

Zn41 = Zn+ hof (tn,27) +€n, n=0,...., N — 1.

This notion of stability implies that small perturbations on the initial data and all the
intermediate calculations leads to small perturbations on the final result
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Back to convergence

stability of the forward Euler scheme

_|_
consistency of the forward Euler scheme

convergence of the forward Euler scheme

It can be shown that, more generally, for a one-step method, consistency and stability imply
convergence.

Convergence of Euler's method
The forward Euler method is convergent. If f is Lipschitz and continuous one can show

< et (hMT
Ognna;Nlenl_e ( + |leoll)
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2. Euler methods

Some examples
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{y’(t)= y(t)—3t  t€[0,5]

the solution is y (t) = % +t

now, if we consider the same problem but with the intial data z(0) = % + €, the solution
is z(t) = 3+t +ee®

as a consequence, z(5) = y(5) + ee'® ~ y(5) + 3¢10°

therefore, if one works with a computer with a round-off error equal to 107°, it will be
impossible to approximate y(5), and this, independently of the numerical method

the problem is ill-conditioned
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{ y' (t) = —150y (£) + 50
y(0) =3

® the solution is y (t) = 3

® here, the problem is well-conditioned. Indeed, if one introduces a perturbation € on the
initial data we have
—150
ly(t) — z(t)| < ee ™%, V>0

® the forward Euler method leads to
Ynt+1 = ¥Yn + ha(—150y, + 50)
that is

1 1
Yn+1 — § = (1 - 150hn) <Yn - §)
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for a constant step h, = h = %, we have

1 1 1
1 — = = (1 —150h)" — =] =(=2)" - =
Ynt1 = 5 = (1 - 150h) <yo 3> (-2) ()/o 3>
in particular
1 1
ys0 — y(0) = (=2)* (}/0—3> ~ 10" <)/0—3> !

this shows that the step size is too large. On the other hand, if it is taken smaller, we will
have round-off errors!

the forward Euler scheme is a numerically unstable scheme.
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{ y'(t)=-My(t) A>0
¥ (0) = yo

® the solution to this problem is y(t) = ype ™t

® the problem is well-conditioned. Indeed, for a small € on the initial data, one gets
ly(t) — z(t)] < ee ™, Vt>0
® the forward Euler method applied to this problem with a constant step size h gives
Yni1 = Yn — Ahyn = (1= Ah)y,
and so

Yn = (1 - )\h)n}/O
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yn=(1—=Ah)"y0

even if the exact solution remains bounded
ly(t) <yl Yt>0

we see that if |1 — Ah| > 1 then the computed solution y, will have a growing amplitude,
leading to an unstable scheme

the absolute stability condition (CFL:=Courant-Friedrichs-Lewy) writes
Ah <2

hence, the larger A is, the smaller h must be.
but if h is too small, then round-off errors appear !

Stability conditions can be analyzed in the complex plane for many ODE methods
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2. Euler methods

The implicit Euler scheme
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The backward Euler scheme (implicit)

To solve the instability problem, we often use an implicit scheme like

{ Yn+1 =Yn+ hnf(tn+17)/n+l) Vo<n<N-1
Yo = Yo

It comes from the approximation of

/ "y (1) dt

by the right rectangular quadrature rule

tht1
/ F(ty (8)) dt = hof(tner, y(Enea))
tnh
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The relation
Ynt1 = Yn + haf (tay1, Yni1)
defines y,+1 in an implicit way.
® this method is therefore more complicate to use than a forward Euler scheme
® at each iteration, this equation must be solved. Does it admit a solution? Is it unique?

® generally, the numerical solution to this equation requires the use of an iterative method
(Newton, fixed point,...)
— see Lecture on nonlinear equations

® the cost of one iteration is then higher than for the forward Euler scheme (which is
explicit).

® however, the stability is greatly improved
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Back to the example

{ y'(t)==Ay(t) A>0

y(0) = yo

® we have, for a constant step h, Yy+1 = ¥n — Ahypy1 that is

__ I
Ykl = (1 ah)

which also writes
Yo

~ (L AR)"
® in particular, we have A > 0 and for h > 0, |y,| < ||

Yn

o furthermore, we can prove that this method converges as the previous one.
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3. One-step methods
Preliminary study
Runge-Kutta methods
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3. One-step methods
Preliminary study
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General study of one-step methods

A one-step method can be written in a general way as

{ Ynt1 = Yn + ha®(tn, Yn, hn), VY ne[O,N—1]
Yo =%

® the approximation yp+1 of y(tn+1) is therefore obtained uniquely from t,, h, and y, the
approximation of y(t,) obtained at the previous time step.

® this method can be implicit or explicit
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General study of one-step methods

A one-step method can be written in a general way as

{ Yn+1 =Yn+ hncb(tm)/na hn)a Vne [[0, N — 1]]
Yo = Yo

e forward Euler scheme: y,11 = yn + haf (s, yn). Here

®(t,y, h) = f(t,y)

® is independent of h.

® backward Euler scheme : y,11 = yn + haf (tn+1, Ynt+1). Here

O(t,y. h) = F(t + h, k)

with k solution to k = y + hf(t + h, k)
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Order of accuracy

We now define the notion of order of accuracy of a one-step method

Definition

A one-step method is said to be of order p (p > 0), if for any solution y of y'(t) = f(t,y(t))
such that y € CP*Y([to, to + T]), there exists a real-valued parameter K which only depends
on y and & such that

N—1
> llenll < KK?
n=0

with €, being the local truncation error

E€n = )/(tn+1) — Y(tn) - hn¢(tn7}/(tn)7 h")
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If a one-step method is stable and of order p and if f € CP([tp, to + T] x R"), then we have

1y (tn) = 7all < Mlly(to) — Joll + Kh?] Vn € [0, N]

.

Examples:
® the forward and backward Euler schemes are first-order

® |et us consider the more general methods
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3. One-step methods

Runge-Kutta methods
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Runge-Kutta methods

® First-order methods require too much computational time to get a given accuracy

® |t is then necessary to use a high-order method: the most known are Runge-Kutta
methods that consist in using high-order numerical integration rules to approximate

/ (e (1)) de

which use intermediate points between t, and t, 1
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Runge-Kutta methods

Let (cj, bj) be an elementary quadrature formula with s stages:

1 s
/ g(x)dx =Y big(c)
0 =

Then
y(tne1) =~ y(tn) + hn Zbk

with t,,,,' =t,+ hnC,', k,' = f(t,h,',y(tn,,'))

Problem

How to evaluate k; = f(t,, y(tn;)) if y(ts;) is not known?
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Runge-Kutta methods

The values y(t, ) are also evaluated through some numerical integration formulae by using
the same points t, ;

s
}/(tn,i) = y(tn) =+ hnzai,jf(tn,jv)/(tn.j)) Vie [[175]]
j=1

The Runge-Kutta methods consists in replacing ~ by =
y(t,j) are given at other intermediates points where it can be evaluated !
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Runge-Kutta methods

® if the matrix (a; ) is strictly lower triangular, then the RK method define explicitly the

values of y, ;, otherwise implicitly.
® the method is a one-step method. Indeed, this scheme can be written as

Ynt+1 = Yn + hn(b(tna)/na hn)

where ®(., ., .) is the function defined by the equations

S 5]
O(tn, Yo, hn) = D _ bikis ki = f(tn + Cihn Yo+ ha Y _aijk) Vi€ [1,5]
i=1 j=1
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Example of Runge-Kutta method

® Explicit midpoint method: we take the midpoint formula

h h
Y(tat1) = y(tn) + hnf (tn + 5yt + 2))

and we replace the unknown value y(t, + %) by the Euler method

hn

y(tn+=7) 2 y(ta) + %f(tn,y(tn))

This provides

h h
Ynt1 = Yn + haf <tn + ?na)/n + ;f(tna)/n)>
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Examples of Runge-Kutta methods

® Trapezoidal method: we take the trapezoidal quadrature formula

hin

2 (f(tmyn) + f(tn+1a)/n+1))

y(tns1) = y(ta) +

which is the implicit trapezoidal method. If we replace the unknown value y(t,+1) by
Euler approximation, we obtain the explicit trapezoidal method

hn

Yn+1 = Yn + 2 [f(tna}/n) + f (tn+17}/n + hnf(tna)/n))]

hn
:yn+?[k1+k2],
with ki = f(tn, ¥n), ko = f(tn + hny¥n + hnk1)
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Butcher Tableaux

A Runge-Kutta method is completely known when we have: s, the coefficients a; j, b; and ¢;.
Usually, we use the following Butcher Tableaux

1411 412 ... dis

C a1 a2 ... azs

Cs |ds1 ds2 ... dsgs
by by ... bs

Explicit Euler: i’% , Explicit midpoint:

D= O
o= O
o
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Butcher Tableau for RK4

® Example for RK4: based on Simpson's rule integration and explicit midpoint rule

0|0 0 0 O
1|1
11100 0
1 1
llg Lo o
110 0 1 0
I2 21
6 6 6 6
kn,l - f(tnv)/n) kn,2 - f(tn + %vyn + %kn,l)
kn,3 = f(tn + %a)/n + %kn,2) kn,4 = f(thrla)/n + hnkn,3)
hy,
Yn+1 = yn+€[kn,1+2kn,2+2kn,3+kn,4]
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Further remarks on Runge-Kutta methods

Under some regularity assumptions on f, it can be proved that the Runge-Kutta methods are
stable. Being stable and consistent, they are convergent.

o A RK method with s stages is of order s

® RK methods are costly, they require many function evaluations

® varying step size RK methods can be derived, such as RK23 and RK45
® |mplicit RK schemes are costly, we privilege explicit RK in practice
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4. Multi-step methods
Adams-Bashforth methods (explicit)
Adams-Moulton methods (implicit)
Predictor-corrector method
Backward differentiation formula (BDF)
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Multi-step methods

® the one-step methods only use the approximate value y, of y (t,) to compute an
approximate value y,+1 of y (tpy1) -

® the multi-step methods also involve the information obtained at the previous steps
th—1,th—2, ..., th—r.

® we will describe here the Adams methods that consist in replacing f (t,y (t)) by an
interpolation polynomial at points t,—,, th—r41, ... ta—1, tn, (tn+1), in the computation of

y (tn1) = y (tn) + /tt f(t,y(t))dt.
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Multi-step methods

® if P, is this polynomial, the approximate values y,1 will be obtained by the approximate
equation

tn+1
Ynt1 = Yn +/ Py (t) dt.
th

¢ the formulae will be implicit (explicit, respectively) if t,11 is (is not, respectively) one of
the interpolation points.
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4. Multi-step methods
Adams-Bashforth methods (explicit)
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Adams-Bashforth methods with r + 1 steps

® we assume that we know the approximate values y, of y (t,) and f,, fo—1, ..., fa_r of
f(t,y (t)) respectively at points tp, th—1, ..., th—/-

® the polynomial P, is chosen as the polynomial of degree less or equal to r such that
Pn(tn,;) = fo_; Vi=0,..r.

® the approximation of y(t,11) is then defined by

th1
Yn+1 = Yn +/ Pn(t)dt
th
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Adams-Bashforth methods with r + 1 steps

® if one represents the polynomial P, by the Newton formula

r
= fltnta 1, tn- ,]H —t )
i=0

the methods becomes

r tht1 i1
Vo1 =Yn+ Y Fltn ta1,.. ., tn_i] (/ [T - t,,j)dt)
i=0 tn

j=0
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The Adams-Bashforth methods with r 4+ 1 steps

® in the case of a constant step hi.e. tj = to + jh, the divided differences can be written as

A'f,
fm n—1s---stn—i] = 7
[tn, th—1 tn—i] T
where
e f ifi=0
At = { AT — ATy i i > 1

are the backward finite differences

® the formula then becomes

i—1

tn+1
Ynt1 = yn+§ Ilh, / H(t—tn—j)dt
th

j=0
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The Adams-Bashforth methods with r 4+ 1 steps

® now, by setting t = t, + sh, s € [0, 1], we have

1 1i-1

/:“ ﬁ(t—t,,_j)dt - h"+1/0 jl})(j—s)ds

j=0
1 .

_ h"+1i!/ <S+I._1>ds
0 I

where < B > is the binomial coefficient generalized to non integer values

(1)-2egepten
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The Adams-Bashforth methods with r 4+ 1 steps

® Hence
4 - L/ s+i—1
Yny1 =Yn + hZ’y,-A'fn with ~; = / ( . > ds
i=0 0
® we show that the ~y; satisfy the relation

;i

-1 1=
=5 ir1 2

+ i

which leads to their recursive computation.
it is important to notice that they do not depend on r, which is useful when one wants to
make the order r vary in a same computation.
® one then gets
5 3 251 95

1
70_17 71_5772_E7’73_§7 74_ﬁ775_288
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The Adams-Bashforth methods with r 4+ 1 steps

® In practice, we prefer to explicitly write the relation as a function of the values of f,_;,
leading to

r
Yn+1 = Yn + hz bi,rfnfi-
i=0

e from the finite difference formula, we can check that

r i r .
br,r = (_1) Yrs bi,r - bi,rfl + (_1) ( i > Y, 0< i <r.
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The Adams-Bashf

r=20
r=1
r=2
r=
=4
r=5
r==o6

® one gets the following tableaux:

bO,r bl,r b2,r b3,r b4,r
1

3 _1

2 2

23 _4 S5

12 3 12

55 _59 37 _3

24 24 24 8

1901 _ 1387 109 __ 637 251
720 360 30 360 720
4277 7923 4991 __ 3649 959
1440 1440 720 720 480
199441 18817 238783  _ 10979 139313
60840 2520 20160 945 20160

rth methods with r + 1 steps

b5,r b6,r
_ 95
288
_ 5783 19807
2520 60840
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The Adams-Bashforth methods with r 4+ 1 steps

® forr=20
Ynt+1 = ¥n + hf, (Euler)
® forr=1 5
Ynt1 = Yn+ 5(3fn — fa-1)
® forr=2 A
Yntl = Yn + 5(23@ — 16f,_1 + 5f,_2)
® forr=3

h
Y+l = 124 (55f 59f,_1 +37f,_» — 9fn,3)
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The Adams-Bashforth methods with r 4+ 1 steps

® this last method (Adams-Bashforth with 4 steps) is usually used.

® if one wishes to apply it to the resolution of our Cauchy problem, we have to know the
four initial approximations yp, y1, 2 and y3. Next, we can use the recursive formula to
compute ya, y5, ...

® Adams computed the Taylor series of the exact solution around the initial value to
determine the initial approximations that are not known

® clearly, we can also get them by using a one-step method

® this method is of order 4 and is stable under the natural smoothness assumptions on f
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The Adams-Bashforth methods with r 4+ 1 steps

® however, the stability constant are often very large which implies some numerical

instabilities analogous to the one that have been underlined in the case of the forward
Euler scheme

® to overcome this drawback, one uses some implicit methods
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4. Multi-step methods

Adams-Moulton methods (implicit)
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The Adams-Moulton methods with r + 1 steps

® we interpolate the function f (t,y (t)) at points t,11, tp, ..., ta—, by the polynomial Qp
of degree less or equal to r 4+ 1 such that

Qn (tn—i) =fi i1=0,1,..,r
Qn (tnt1) = fay1 (the value is still unknown).

® by a similar computation, we obtain

r+1

Vo1 =Yn+hY A
i=0

where

. /0 s(s+1)...(s+i—1)

—1 /!
® we check that
v =i — i1, i > 1.
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The Adams-Moulton method with r + 1 steps

® as before, we prefer to write

r
Yn+e1 = Yn+ h Z b;'k,rfnfi
i=—1

where, as it can be easily proved, the b7, satisfy to

* 1 _«x * * i+1 r+1 *
br,r = (_1)r+ Yr41s bi,r = bi,r—1+(_1)+ ( i1 >7r+1'
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The Adams-Moulton method with r + 1 steps

® one gets the tableau

r=20
r=1
r=2
r=3
r=4
r=5
r==6

* * * * * * * * *
b—l,r bO,r bl,r b2,r b3,r b4,r b5,r b6,r b7,r
1 1
3 2 1
5 2 1 _1
12 3 12 2
9 19 _5 1 .
24 24 24 24 12
251 28 1 53 _ 19 1
720 360 30 360 720 24
95 1427 _ 133 241 _ 173 3 19
288 1440 240 720 1440 160 720
19087 2713 _ 15487 586 _ 6737 263 _ 863 3
60480 2520 20160 945 20160 2520 60480 160
36799 139849  _ 121797 123133  _ 88545 41499 _ 11351 275 863
120960 120960 120960 120960 120960 120960 120960 24192 60480
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The Adams-Moulton methods with r + 1 steps

e forr=0
e forr=1
® forr=2

h
Yn+1 = Yn + E(fn-i-l + fn)
h
Yn+1 = Yn+ E(5fn+1 + 8fn - fnfl)

h
Yn+1 =Yn+ ﬂ(gfn—i-l +19f, — 5f,_1 + fn—2)
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The Adams-Moulton methods with r + 1 steps

® this last method (3-steps Adams-Moulton method) is the most commonly used method.
® we show that under some smoothness assumptions this method is of order 4 and stable

® the stability coefficients are much better (smaller) than for the explicit fourth-order
Adams-Bashforth method

® of course, we must pay the price since we implicitly define y,;1 through
for1 = f (tnt1, Ynt1) -
® a nonlinear system must then be solved.

® to this end, we can consider the following predictor-corrector method

67/75



4. Multi-step methods

Predictor-corrector method

68/75



Predictor-corrector method

® To solve the equation

h
Yn+t1 = Yn + ﬂ(gf(tn+1a)/n+l) + 191, — 5f 1 + fn*2)

we can use a successive approximation method (i.e. fixed-point) consisting in building the
sequence ¥, y1, ¥2, ..., ¥p defined by

{ Vo1 = Yn + o2 (9F (tnt1, Jp) + 19F, — 5fu1 + fo_2)

Vo to choose.

® one can iterate until convergence (in general j, converges towards y,1 when p tends to
infinity)
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Predictor-corrector method

® most of the time, one only iterates a few times, even sometimes 1 or 2.
® in addition, the initial value yg is often obtained through one step of an explicit method of
the same order

® then, we have a predictor-corrector method : the evaluation of y; corresponds to a
prediction; this value is then next corrected through one or two iterations of a fixed point
algorithm.
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Predictor-corrector method

finally, the following scheme is often used

Predictor: fourth-order Adams-Bashforth method
Yo = Yn + = (55f, — 59f,_1 + 37f,_p — 9f,_3)

Corrector: one or two iterations of the Adams-Moulton method

of order 4

)7P+1 =Yn+ % (gf (tn+17)7p) + 19f, — 5f, 1 + fnf2) , p=0,L
we show that this method is also of order 4

its stability is clearly better than for the Adams-Bashforth scheme

the solution to the nonlinear system related to the Adams-Moulton formula is finally done
explicitly.
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4. Multi-step methods

Backward differentiation formula (BDF)
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Backward differentiation formula

A last category of multi-step method consists of evaluating f at the end of the current step
(tn+s, Ynts), and driving an interpolating polynomial for y with the points (tpys,. .., tn).
We start from y'(t,1s) = f(tn+s, ¥(tnts)) and use the approximation

Pz,s(tn+s) = f(tnts; Yn+s)

By doing so we end up with BDF schemes of order s

S
> akynik = hBF(tats, Ynts)
k=0

BDFL: yoi1 — yn = hf (tni1, Yni1)
BDF2: y,i0 — §Yn+1 + %Yn = %hf(tn+2ayn+2)
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Backward differentiation formula (BDF)

BDF schemes with s stages are of order s

BDF schemes are implicit
® they are popular for stiff problems because of their stability property

methods with s > 6 cannot be used
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Summary of the contents

We have seen some numerical methods to solve VP
1. One-step methods of different orders (Euler, RK)
2. Multi-step methods (AM, AB, BDF)
3. Predictor-corrector methods
They are various differences between the schemes
® The methods can be explicit or implicit, and of different orders of accuracy
® |mplicit methods are more stable than explicit methods, but are also more costly
® Usually an adaptive step size solver is necessary

® Writing an efficient ODE solver requires a good knowledge and experience of these
methods
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