Numerical analysis (4/7): ODEs University of Luxembourg

Philippe Marchner

Siemens Digital Industries Software, France

November 9th, 2023

- 1. Introduction
- 2. Euler methods

The forward Euler method Convergence analysis Some examples The implicit Euler scheme

3. One-step methods Preliminary study

Runge-Kutta methods

4. Multi-step methods

1. Introduction

2. Euler methods

The forward Euler method Convergence analysis Some examples The implicit Euler scheme

3. One-step methods

Preliminary study Runge-Kutta methods

4. Multi-step methods

So far, we have seen methods to perform **interpolation**, **differentiation** and **integration**. We will go a step further and study methods to solve ordinary differential equations (ODEs)

$$y'(t) = f(t, y(t)), \quad y(t_0) = y_0, \quad t \in I = [t_0, T]$$

We will address theoretical and numerical questions

- Does the ODE have a (unique) solution ? What is the *nature* of the solution (oscillatory, stiff, divergent, etc.) ?
- Does the numerical solution *converges* to the exact solution ?
- What is the accuracy/cost of the method ?

Atmospheric convection, the "Butterfly effect"

$$\begin{aligned} x'(t) &= \sigma(y(t) - x(t)) \\ y'(t) &= x(t)(\rho - z) - y(t) \\ z'(t) &= x(t)y(t) - \beta z(t) \end{aligned}$$

Numeric test: $\rho = 28$, $\sigma = 10$, $\beta = 8/3$, $(x_0, y_0, z_0) = (1, 1, 1)$, T = 40, $t_0 = 0$

https://matplotlib.org/stable/gallery/mplot3d/lorenz_attractor.html

• A first-order ODE is an equation of the form

$$y'(t) = f(t, y(t)), \quad \forall t \in I$$

where *I* is an interval of \mathbb{R} , $y : [0, +\infty[\rightarrow \mathbb{R}^N \text{ is a vectorial function depending on the variable$ *t*and*f* $is a map from <math>I \times \mathbb{R}^N$ onto \mathbb{R}^N .

• An ODE of order *p* is an equation of the form

$$y^{(p)}(t) = f\left(t, y(t), y'(t), \dots, y^{(p-1)}(t)\right), \quad \forall t \in I$$

where *I* is an interval of \mathbb{R} , $y : [0, +\infty[\rightarrow \mathbb{R}^N \text{ is a vectorial function with respect to$ *t*and*f* $is an application from <math>I \times (\mathbb{R}^N)^p$ to \mathbb{R}^N .

Any ODE of order p can be written as a first-order ODE.

Indeed, by setting

$$x_1(t) = y(t), \ x_2(t) = y'(t), \ x_3(t) = y''(t), \dots, x_p(t) = y^{(p-1)}(t)$$

the problem writes

$$x_1'(t) = x_2(t), \ x_2'(t) = x_3(t), \dots, x_{p-1}'(t) = x_p(t)$$

and

$$x'_{p}(t) = f(t, x_{1}(t), x_{2}(t), \dots, x_{p}(t))$$

Remark

which can be written, by setting

$$X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_p(t) \end{pmatrix} \quad \text{and} \quad F(t, X) = \begin{pmatrix} X_2 \\ X_3 \\ \vdots \\ f(t, x_1, x_2, \dots, x_p) \end{pmatrix}$$

X'(t) = F(t, X(t))

Example

Consider
$$y''(t) + \omega^2 y(t) = g(t)$$
. Define $x_1 = y, x_2 = y'$, such as

$$X'(t) = \begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\omega^2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ g(t) \end{pmatrix} = \begin{pmatrix} x_2 \\ -\omega^2 x_1 + g(t) \end{pmatrix} = F(t, X(t))$$

Definition - Initial value problem

• For an interval I, $f: I \times \mathbb{R}^N \to \mathbb{R}^N$, $t_0 \in I$ and $y^0 \in \mathbb{R}^N$, solving the Cauchy problem

$$\begin{cases} y'(t) = f(t, y(t)), & \forall t \in I \\ y(t_0) = y^0 \end{cases}$$

means to determine all functions $y : I \to \mathbb{R}^N$ solutions to the ODE satisfying $y(t_0) = y_0$. We also talk about Initial Value Problem (IVP)

Stability of first order IVP

If f is continuous in t and Lipschitz continuous in y, i.e. $|\partial_y f(t, y)| \le L$ for $t \in I$, then the IVP has a unique solution in I. Moreover for two solutions (y_1, y_2) with different initial conditions we have

$$|y_1(t) - y_2(t)| \le e^{L(t-t_0)}|y_1(t_0) - y_2(t_0)|$$

A simple example

• For $a \in \mathbb{R}$, the IVP

$$\left\{ egin{array}{l} y'(t)=ay(t), \ orall t>0 \ y\left(0
ight)=y_0 \end{array}
ight.$$

has the unique solution $y(t) = y_0 e^{at}$

• more generally, if a is a continuous function on $[0, +\infty[$, the IVP has the solution

$$y(t) = y_0 \exp\left(\int_0^t a(\sigma) \, d\sigma\right)$$

Difference in two solutions that start at nearby points for y' = ty (left) and y' = -ty (right)

Numerical Approximation

We try to numerically solve the IVP, which means that we look for an approximate solution to

$$\begin{cases} y'(t) = f(t, y(t)), \ 0 \le t \le T \\ y(0) = y_0 \end{cases}$$

with $y_0 \in \mathbb{R}^N$ and $f : [0, +\infty[imes \mathbb{R}^N o \mathbb{R}^N]$

We remark that this problem is equivalent to

$$y(t) = y_0 + \int_0^t f(s, y(s)) ds \quad \forall \ t \in [0, T]$$

Therefore, it is sufficient to obtain a numerical approximation to

$$\int_0^t f(s, y(s)) ds$$

and, to this end we can use the ideas and methods from numerical integration.

Numerical Approximation

For a subdivision

$$0 = t_0 < t_1 < t_2 < \ldots < t_N = T$$

our problem implies that

$$\begin{cases} y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(t, y(t)) dt, & \forall \ 0 \le n \le N-1 \\ y(0) = y_0 \end{cases}$$

The numerical methods differ by the choice of the evaluation of the integrals

$$\int_{t_n}^{t_{n+1}} f(t, y(t)) dt$$

Remark

The integrand depends on y itself, which makes the integration more complicated

1. Introduction

2. Euler methods

The forward Euler method Convergence analysis Some examples The implicit Euler scheme

3. One-step methods

Preliminary study Runge-Kutta methods

4. Multi-step methods

1. Introduction

2. Euler methods

The forward Euler method

Convergence analysis Some examples The implicit Euler scheme

3. One-step methods

Preliminary study Runge-Kutta methods

4. Multi-step methods

The forward Euler method

- let us assume that our Cauchy problem admits one solution y on [0, T].
- we introduce the subdivision $0 = t_0 < t_1 < \ldots < t_N = T$ and $h_n = t_{n+1} t_n$
- Let us recall that our problems imply

$$\begin{cases} y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(t, y(t)) dt, & \forall \ 0 \le n \le N-1 \\ y(0) = y_0 \end{cases}$$

• the forward Euler method (explicit) corresponds to an approximation by the left rectangle quadrature rule

$$\int_{t_n}^{t_{n+1}} f(t, y(t)) dt \simeq h_n f(t_n, y(t_n)).$$

• we then obtain, where \tilde{y}_n is an approximation of $y(t_n)$,

$$\left\{ \begin{array}{ll} \tilde{y}_{n+1} = \tilde{y}_n + h_n f(t_n, \tilde{y}_n), \quad \forall \ 0 \leq n \leq N-1 \\ y_0 = \tilde{y}_0 \end{array} \right.$$

1. Introduction

2. Euler methods

The forward Euler method

Convergence analysis

Some examples The implicit Euler scheme

3. One-step methods

Preliminary study Runge-Kutta methods

4. Multi-step methods

Convergence

It is necessary to analyze in which sense the computed value \tilde{y}_n is sufficiently close to the exact value $y(t_n)$ and so we want to evaluate the discretization error

$$e_n = y(t_n) - \tilde{y}_n.$$

Definition

we say that the method is converging if

$$\max_{0 \le n \le N} |e_n|$$

tends towards 0 when $h \rightarrow 0$ and $\tilde{y}_0 \rightarrow y(t_0)$.

Remark

If the method is converging, by choosing *h* sufficiently small, and \tilde{y}_0 close to $y(t_0)$, we obtain a good approximation of $y(t_n)$, n = 0, ..., N

Remarks

- it seems more natural to directly set $\tilde{y}_0 = y(t_0)$ in our scheme. However, in practice, if $y(t_0)$ is real-valued, it cannot be considered as exact (meaning in exact arithmetic) because of the round-off errors (on a computer). A correct analysis assumes $\tilde{y}_0 \neq y_0$
- like any computation, a stability problem arises: it is necessary to understand the consequences on the computation of small variations of \tilde{y}_0 and $f(t_n, \tilde{y}_n)$.

Consistency

We first introduce a notion called consistency of a numerical scheme:

the consistency error represents the error at the *n*-th step when replacing the ODE by the discrete equation

$$\varepsilon_n = y(t_{n+1}) - y(t_n) - h_n f(t_n, y(t_n)).$$

 ε_n is sometimes called the local truncation error

Definition

A method is said to be consistent if

$$\lim_{n\to 0}\sum_{n=0}^{N-1}\|\varepsilon_n\|=0.$$

Remark: consistency is a **local** notion, it supposes that the previous data are known exactly. On the other hand, stability relates to the propagation of local errors

Definition

We say that a method is stable if there exists a constant K such that

$$\max_{n} \|\tilde{y}_{n} - \tilde{z}_{n}\| \leq K \left[\|\tilde{y}_{0} - \tilde{z}_{0}\| + \sum_{n=0}^{N-1} \|\varepsilon_{n}\| \right]$$

for any \tilde{z}_n solution to

$$\tilde{z}_{n+1} = \tilde{z}_n + h_n f(t_n, \tilde{z}_n) + \varepsilon_n, \ n = 0, ..., N - 1.$$

This notion of stability implies that small perturbations on the initial data and all the intermediate calculations leads to small perturbations on the final result

Back to convergence

stability of the forward Euler scheme + consistency of the forward Euler scheme = convergence of the forward Euler scheme

Remark:

It can be shown that, more generally, for a one-step method, consistency and stability imply convergence.

Convergence of Euler's method

The forward Euler method is convergent. If f is Lipschitz and continuous one can show

$$\max_{0 \le n \le N} |e_n| \le e^{LT} \left(hMT + \|e_0\| \right)$$

1. Introduction

2. Euler methods

The forward Euler method Convergence analysis

Some examples

The implicit Euler scheme

3. One-step methods

Preliminary study Runge-Kutta methods

4. Multi-step methods

Example

$$\begin{cases} y'(t) = 3y(t) - 3t & t \in [0, 5] \\ y(0) = \frac{1}{3} \end{cases}$$

- the solution is $y(t) = \frac{1}{3} + t$
- now, if we consider the same problem but with the intial data $z(0) = \frac{1}{3} + \epsilon$, the solution is $z(t) = \frac{1}{3} + t + \epsilon e^{3t}$
- as a consequence, $z(5) = y(5) + \epsilon e^{15} \simeq y(5) + 3\epsilon 10^6$
- therefore, if one works with a computer with a round-off error equal to 10^{-6} , it will be impossible to approximate y(5), and this, independently of the numerical method
- the problem is ill-conditioned

$$\begin{cases} y'(t) = -150 y(t) + 50 \\ y(0) = \frac{1}{3} \end{cases}$$

- the solution is $y(t) = \frac{1}{3}$
- here, the problem is well-conditioned. Indeed, if one introduces a perturbation ϵ on the initial data we have

$$|y(t)-z(t)| \leq \epsilon e^{-150t}, \quad \forall t \geq 0$$

• the forward Euler method leads to

$$y_{n+1} = y_n + h_n(-150y_n + 50)$$

that is

$$y_{n+1} - \frac{1}{3} = (1 - 150h_n)\left(y_n - \frac{1}{3}\right)$$

• for a constant step $h_n = h = \frac{1}{50}$, we have

$$y_{n+1} - \frac{1}{3} = (1 - 150h)^n \left(y_0 - \frac{1}{3}\right) = (-2)^n \left(y_0 - \frac{1}{3}\right)$$

• in particular

$$y_{50} - y(0) = (-2)^{50} \left(y_0 - rac{1}{3}
ight) \simeq 10^{15} \left(y_0 - rac{1}{3}
ight) \, !$$

- this shows that the step size is too large. On the other hand, if it is taken smaller, we will have round-off errors!
- the forward Euler scheme is a numerically unstable scheme.

Example

$$\begin{cases} y'(t) = -\lambda y(t) \quad \lambda > 0 \\ y(0) = y_0 \end{cases}$$

- the solution to this problem is $y(t) = y_0 e^{-\lambda t}$
- the problem is well-conditioned. Indeed, for a small ϵ on the initial data, one gets

$$|y(t)-z(t)| \leq \epsilon e^{-\lambda t}, \quad \forall \ t \geq 0$$

• the forward Euler method applied to this problem with a constant step size h gives

$$y_{n+1} = y_n - \lambda h y_n = (1 - \lambda h) y_n$$

and so

$$y_n = (1 - \lambda h)^n y_0$$

$$y_n = (1 - \lambda h)^n y_0$$

• even if the exact solution remains bounded

$$|y(t)| \leq |y_0| \quad \forall \ t \geq 0$$

we see that if $|1 - \lambda h| > 1$ then the computed solution y_n will have a growing amplitude, leading to an unstable scheme

• the absolute stability condition (CFL:=Courant-Friedrichs-Lewy) writes

$\lambda h < 2$

- hence, the larger λ is, the smaller h must be.
- but if *h* is too small, then round-off errors appear !
- Stability conditions can be analyzed in the complex plane for many ODE methods

1. Introduction

2. Euler methods

The forward Euler method Convergence analysis Some examples The implicit Euler scheme

3. One-step methods

Preliminary study Runge-Kutta methods

4. Multi-step methods

To solve the instability problem, we often use an implicit scheme like

$$\begin{cases} y_{n+1} = y_n + h_n f(t_{n+1}, y_{n+1}) & \forall \ 0 \le n \le N-1 \\ y_0 = \tilde{y}_0 \end{cases}$$

It comes from the approximation of

$$\int_{t_{n}}^{t_{n+1}}f\left(t,y\left(t\right)\right)dt$$

by the right rectangular quadrature rule

$$\int_{t_n}^{t_{n+1}} f(t, y(t)) dt \simeq h_n f(t_{n+1}, y(t_{n+1}))$$

The relation

$$y_{n+1} = y_n + h_n f(t_{n+1}, y_{n+1})$$

defines y_{n+1} in an implicit way.

- this method is therefore more complicate to use than a forward Euler scheme
- at each iteration, this equation must be solved. Does it admit a solution? Is it unique?
- generally, the numerical solution to this equation requires the use of an iterative method (Newton, fixed point,...)
 - \rightarrow see Lecture on nonlinear equations
- the cost of one iteration is then higher than for the forward Euler scheme (which is explicit).
- however, the stability is greatly improved

Back to the example

Example

$$\begin{cases} y'(t) = -\lambda y(t) \quad \lambda > 0 \\ y(0) = y_0 \end{cases}$$

• we have, for a constant step h, $y_{n+1} = y_n - \lambda h y_{n+1}$ that is

$$y_{n+1} = \frac{y_n}{(1+\lambda h)}$$

which also writes

$$y_n = \frac{y_0}{(1+\lambda h)^n}$$

- in particular, we have $\lambda > 0$ and for h > 0, $|y_n| \le |y_0|$.
- furthermore, we can prove that this method converges as the previous one.

1. Introduction

2. Euler methods

The forward Euler method Convergence analysis Some examples The implicit Euler scheme

3. One-step methods

Preliminary study Runge-Kutta methods

4. Multi-step methods

1. Introduction

2. Euler methods

The forward Euler method Convergence analysis Some examples The implicit Euler scheme

3. One-step methods

Preliminary study Runge-Kutta methods

4. Multi-step methods

A one-step method can be written in a general way as

$$\begin{cases} y_{n+1} = y_n + h_n \Phi(t_n, y_n, h_n), & \forall \ n \in \llbracket 0, N-1 \rrbracket \\ y_0 = \tilde{y}_0 \end{cases}$$

- the approximation y_{n+1} of $y(t_{n+1})$ is therefore obtained uniquely from t_n , h_n and y_n the approximation of $y(t_n)$ obtained at the previous time step.
- this method can be implicit or explicit

General study of one-step methods

A one-step method can be written in a general way as

$$\begin{cases} y_{n+1} = y_n + h_n \Phi(t_n, y_n, h_n), & \forall \ n \in \llbracket 0, N - 1 \rrbracket \\ y_0 = \tilde{y}_0 \end{cases}$$

Example

• forward Euler scheme: $y_{n+1} = y_n + h_n f(t_n, y_n)$. Here

 $\Phi(t,y,h)=f(t,y)$

 Φ is independent of *h*.

• backward Euler scheme : $y_{n+1} = y_n + h_n f(t_{n+1}, y_{n+1})$. Here

$$\Phi(t, y, h) = f(t+h, k)$$

with k solution to k = y + hf(t + h, k)

We now define the notion of order of accuracy of a one-step method

Definition

A one-step method is said to be of order p (p > 0), if for any solution y of y'(t) = f(t, y(t)) such that $y \in C^{p+1}([t_0, t_0 + T])$, there exists a real-valued parameter K which only depends on y and Φ such that

$$\sum_{n=0}^{N-1} \|\varepsilon_n\| \le K h^p$$

with ε_n being the local truncation error

$$\varepsilon_n = y(t_{n+1}) - y(t_n) - h_n \Phi(t_n, y(t_n), h_n)$$
Theorem

If a one-step method is stable and of order p and if $f \in C^p([t_0, t_0 + T] \times \mathbb{R}^n)$, then we have

$$\|y(t_n) - \widetilde{y}_n\| \leq M\left[\|y(t_0) - \widetilde{y}_0\| + Kh^{p}
ight] \quad \forall n \in \llbracket 0, N
bracket$$

Examples:

- the forward and backward Euler schemes are first-order
- let us consider the more general methods

Outline

1. Introduction

2. Euler methods

The forward Euler method Convergence analysis Some examples The implicit Euler scheme

3. One-step methods

Preliminary study Runge-Kutta methods

4. Multi-step methods

Adams-Bashforth methods (explicit) Adams-Moulton methods (implicit) Predictor-corrector method Backward differentiation formula (BDF)

- First-order methods require too much computational time to get a given accuracy
- It is then necessary to use a high-order method: the most known are Runge-Kutta methods that consist in using high-order numerical integration rules to approximate

$$\int_{t_n}^{t_{n+1}} f(t, y(t)) dt$$

which use **intermediate points** between t_n and t_{n+1}

Runge-Kutta methods

Let (c_j, b_j) be an elementary quadrature formula with s stages:

$$\int_0^1 g(x) dx = \sum_{j=1}^s b_j g(c_j)$$

Then

$$y(t_{n+1}) \simeq y(t_n) + h_n \sum_{i=1}^s b_i \frac{k_i}{k_i}$$

with $t_{n,i} = t_n + h_n c_i$, $k_i = f(t_{n,i}, y(t_{n,i}))$

Problem

How to evaluate $k_i = f(t_{n,i}, y(t_{n,i}))$ if $y(t_{n,i})$ is not known?

The values $y(t_{n,i})$ are also evaluated through some numerical integration formulae by using the same points $t_{n,i}$

$$y(t_{n,i}) \simeq y(t_n) + h_n \sum_{j=1}^s a_{i,j} f(t_{n,j}, y(t_{n,j})) \quad \forall i \in \llbracket 1, s \rrbracket$$

The Runge-Kutta methods consists in replacing \simeq by = $y(t_{n,j})$ are given at other intermediates points where it can be evaluated !

Remarks

- if the matrix $(a_{i,j})$ is strictly lower triangular, then the RK method define explicitly the values of $y_{n,j}$, otherwise implicitly.
- the method is a one-step method. Indeed, this scheme can be written as

$$y_{n+1} = y_n + h_n \Phi(t_n, y_n, h_n)$$

where $\Phi(.,.,.)$ is the function defined by the equations

$$\Phi(t_n, y_n, h_n) = \sum_{i=1}^s \frac{b_i k_i}{k_i}, \ k_i = f(t_n + \frac{c_i h_n}{k_i}, y_n + h_n \sum_{j=1}^s \frac{a_{i,j} k_j}{k_j}) \quad \forall \ i \in \llbracket 1, s \rrbracket$$

Example of Runge-Kutta method

• Explicit midpoint method: we take the midpoint formula

$$y(t_{n+1}) \simeq y(t_n) + h_n f\left(t_n + \frac{h_n}{2}, y(t_n + \frac{h_n}{2})\right)$$

and we replace the unknown value $y(t_n + \frac{h_n}{2})$ by the Euler method

$$y(t_n+\frac{h_n}{2})\simeq y(t_n)+\frac{h_n}{2}f(t_n,y(t_n))$$

This provides

$$y_{n+1} = y_n + h_n f\left(t_n + \frac{h_n}{2}, y_n + \frac{h_n}{2}f(t_n, y_n)\right)$$

Examples of Runge-Kutta methods

• Trapezoidal method: we take the trapezoidal quadrature formula

$$y(t_{n+1}) \simeq y(t_n) + \frac{h_n}{2} (f(t_n, y_n) + f(t_{n+1}, y_{n+1}))$$

which is the implicit trapezoidal method. If we replace the unknown value $y(t_{n+1})$ by Euler approximation, we obtain the explicit trapezoidal method

$$y_{n+1} = y_n + \frac{h_n}{2} [f(t_n, y_n) + f(t_{n+1}, y_n + h_n f(t_n, y_n))]$$

= $y_n + \frac{h_n}{2} [k_1 + k_2],$
with $k_1 = f(t_n, y_n), \quad k_2 = f(t_n + h_n, y_n + h_n k_1)$

Butcher Tableaux

A Runge-Kutta method is completely known when we have: s, the coefficients $a_{i,j}$, b_j and c_j . Usually, we use the following Butcher Tableaux

c_1	a _{1,1}	$a_{1,2}$	 $a_{1,s}$
<i>c</i> ₂	a _{2,1}	a _{2,2}	 a _{2,s}
÷	:	÷	÷
Cs	$a_{s,1}$	<i>a</i> _{s,2}	 $a_{s,s}$
	b_1	b_2	 bs

Example

Explicit Euler:
$$\begin{array}{c|c} 0 & 0 \\ \hline 1 \end{array}$$
, Explicit midpoint: $\begin{array}{c|c} 0 & 0 & 0 \\ \hline \frac{1}{2} & \frac{1}{2} & 0 \\ \hline 0 & 1 \end{array}$,

Butcher Tableau for RK4

• Example for RK4: based on Simpson's rule integration and explicit midpoint rule

$$\begin{array}{c|cccccc} 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ \hline & \frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} \end{array}$$

$$\begin{array}{rcl} k_{n,1} & = & f(t_n, y_n) & k_{n,2} & = & f(t_n + \frac{h_n}{2}, y_n + \frac{h_n}{2}k_{n,1}) \\ k_{n,3} & = & f(t_n + \frac{h_n}{2}, y_n + \frac{h_n}{2}k_{n,2}) & k_{n,4} & = & f(t_{n+1}, y_n + h_n k_{n,3}) \end{array}$$

$$y_{n+1} = y_n + \frac{h_n}{6} [k_{n,1} + 2k_{n,2} + 2k_{n,3} + k_{n,4}]$$

Under some regularity assumptions on f, it can be proved that the Runge-Kutta methods are stable. Being stable and consistent, they are convergent.

- A RK method with s stages is of order s
- RK methods are costly, they require many function evaluations
- varying step size RK methods can be derived, such as RK23 and RK45
- Implicit RK schemes are costly, we privilege explicit RK in practice

Outline

1. Introduction

2. Euler methods

The forward Euler method Convergence analysis Some examples The implicit Euler scheme

3. One-step methods Preliminary study Runge-Kutta methods

4. Multi-step methods

Adams-Bashforth methods (explicit) Adams-Moulton methods (implicit) Predictor-corrector method Backward differentiation formula (BDF)

- the one-step methods only use the approximate value y_n of $y(t_n)$ to compute an approximate value y_{n+1} of $y(t_{n+1})$.
- the multi-step methods also involve the information obtained at the previous steps $t_{n-1}, t_{n-2}, ..., t_{n-r}$.
- we will describe here the Adams methods that consist in replacing f(t, y(t)) by an interpolation polynomial at points $t_{n-r}, t_{n-r+1}, ..., t_{n-1}, t_n, (t_{n+1})$, in the computation of

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(t, y(t)) dt.$$

• if P_n is this polynomial, the approximate values y_{n+1} will be obtained by the approximate equation

$$y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} P_n(t) dt.$$

• the formulae will be implicit (explicit, respectively) if t_{n+1} is (is not, respectively) one of the interpolation points.

Outline

1. Introduction

2. Euler methods

The forward Euler method Convergence analysis Some examples The implicit Euler scheme

3. One-step methods Preliminary study Runge-Kutta methods

4. Multi-step methods

Adams-Bashforth methods (explicit) Adams-Moulton methods (implicit) Predictor-corrector method

Backward differentiation formula (BDF)

- we assume that we know the approximate values y_n of $y(t_n)$ and $f_n, f_{n-1}, ..., f_{n-r}$ of f(t, y(t)) respectively at points $t_n, t_{n-1}, ..., t_{n-r}$.
- the polynomial P_n is chosen as the polynomial of degree less or equal to r such that

$$P_n(t_{n-i}) = f_{n-i} \qquad \forall i = 0, ..., r.$$

• the approximation of $y(t_{n+1})$ is then defined by

$$y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} P_n(t) dt$$

• if one represents the polynomial P_n by the Newton formula

$$P_n(t) = \sum_{i=0}^r f[t_n, t_{n-1}, \dots, t_{n-i}] \prod_{j=0}^{i-1} (t - t_{n-j})$$

the methods becomes

$$y_{n+1} = y_n + \sum_{i=0}^r f[t_n, t_{n-1}, \dots, t_{n-i}] \left(\int_{t_n}^{t_{n+1}} \prod_{j=0}^{i-1} (t - t_{n-j}) dt \right)$$

• in the case of a constant step h i.e. $t_j = t_0 + jh$, the divided differences can be written as

$$f[t_n, t_{n-1}, \ldots, t_{n-i}] = \frac{\Delta^i f_n}{i! h^i}$$

where

$$\Delta^{i} f_{k} = \begin{cases} f_{k} & \text{if } i = 0\\ \Delta^{i-1} f_{k} - \Delta^{i-1} f_{k-1} & \text{if } i \ge 1 \end{cases}$$

are the backward finite differences

• the formula then becomes

$$y_{n+1} = y_n + \sum_{i=0}^r \frac{\Delta^i f_n}{i! h^i} \left(\int_{t_n}^{t_{n+1}} \prod_{j=0}^{i-1} (t - t_{n-j}) dt \right)$$

• now, by setting $t = t_n + sh$, $s \in [0, 1]$, we have

$$\int_{t_n}^{t_{n+1}} \prod_{j=0}^{i-1} (t - t_{n-j}) dt = h^{i+1} \int_0^1 \prod_{j=0}^{i-1} (j-s) ds$$
$$= h^{i+1} i! \int_0^1 \left(\begin{array}{c} s + i - 1 \\ i \end{array} \right) ds$$

where $\begin{pmatrix} s \\ k \end{pmatrix}$ is the binomial coefficient generalized to non integer values

$$\begin{pmatrix} s\\k \end{pmatrix} = \frac{s(s-1)\dots(s-k+1)}{1.2\dots k}$$

• Hence

$$y_{n+1} = y_n + h \sum_{i=0}^r \gamma_i \Delta^i f_n$$
 with $\gamma_i = \int_0^1 \left(\begin{array}{c} s+i-1\\i \end{array} \right) ds$

• we show that the γ_i satisfy the relation

$$\gamma_0 = 1, \ 1 = \frac{\gamma_0}{i+1} + \frac{\gamma_1}{i} + \dots + \frac{\gamma_{i-1}}{2} + \gamma_i$$

which leads to their recursive computation.

- it is important to notice that they do not depend on *r*, which is useful when one wants to make the order *r* vary in a same computation.
- one then gets

$$\gamma_0 = 1, \ \gamma_1 = \frac{1}{2}, \ \gamma_2 = \frac{5}{12}, \ \gamma_3 = \frac{3}{8}, \ \gamma_4 = \frac{251}{720}, \ \gamma_5 = \frac{95}{288}$$

• In practice, we prefer to explicitly write the relation as a function of the values of f_{n-i} , leading to

$$y_{n+1} = y_n + h \sum_{i=0}^r b_{i,r} f_{n-i}.$$

• from the finite difference formula, we can check that

$$b_{r,r} = (-1)^r \gamma_r, \ b_{i,r} = b_{i,r-1} + (-1)^i \left(\begin{array}{c} r \\ i \end{array} \right) \gamma_r, \ 0 \leq i \leq r.$$

• one gets the following tableaux:

	$b_{0,r}$	$b_{1,r}$	$b_{2,r}$	b _{3,r}	$b_{4,r}$	$b_{5,r}$	$b_{6,r}$	γ_{r}
r = 0	1							1
r = 1	$\frac{3}{2}$	$-\frac{1}{2}$						$\frac{1}{2}$
<i>r</i> = 2	$\frac{23}{12}$	$-\frac{4}{3}$	$\frac{5}{12}$					$\frac{5}{12}$
<i>r</i> = 3	<u>55</u> 24	$-\frac{59}{24}$	<u>37</u> 24	$-\frac{3}{8}$				<u>3</u> 8
<i>r</i> = 4	<u>1901</u> 720	$-\frac{1387}{360}$	$\frac{109}{30}$	$-\frac{637}{360}$	<u>251</u> 720			$\frac{251}{720}$
<i>r</i> = 5	$\frac{4277}{1440}$	$-\frac{7923}{1440}$	<u>4991</u> 720	$-\frac{3649}{720}$	<u>959</u> 480	$-\frac{95}{288}$		<u>95</u> 288
<i>r</i> = 6	$\frac{199441}{60840}$	$-\frac{18817}{2520}$	238783 20160	$-\frac{10979}{945}$	$\frac{139313}{20160}$	$-\frac{5783}{2520}$	$\frac{19807}{60840}$	$\frac{19807}{60840}$

• for *r* = 0

$$y_{n+1} = y_n + hf_n$$
 (Euler)

• for *r* = 1

$$y_{n+1} = y_n + \frac{h}{2}(3f_n - f_{n-1})$$

• for r = 2 $y_{n+1} = y_n + \frac{h}{12}(23f_n - 16f_{n-1} + 5f_{n-2})$ • for r = 3 $y_{n+1} = y_n + \frac{h}{124}(55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3})$

- this last method (Adams-Bashforth with 4 steps) is usually used.
- if one wishes to apply it to the resolution of our Cauchy problem, we have to know the four initial approximations y_0 , y_1 , y_2 and y_3 . Next, we can use the recursive formula to compute y_4 , y_5 , ...
- Adams computed the Taylor series of the exact solution around the initial value to determine the initial approximations that are not known
- clearly, we can also get them by using a one-step method
- this method is of order 4 and is stable under the natural smoothness assumptions on f

- however, the stability constant are often very large which implies some numerical instabilities analogous to the one that have been underlined in the case of the forward Euler scheme
- to overcome this drawback, one uses some implicit methods

Outline

1. Introduction

2. Euler methods

The forward Euler method Convergence analysis Some examples The implicit Euler scheme

3. One-step methods Preliminary study Runge-Kutta methods

4. Multi-step methods

Adams-Bashforth methods (explicit) Adams-Moulton methods (implicit)

Predictor-corrector method Backward differentiation formula (BDF)

The Adams-Moulton methods with r + 1 steps

• we interpolate the function f(t, y(t)) at points t_{n+1} , t_n , ..., t_{n-r} by the polynomial Q_n of degree less or equal to r + 1 such that

$$\begin{cases} Q_n(t_{n-i}) = f_{n-i} \quad i = 0, 1, ..., r \\ Q_n(t_{n+1}) = f_{n+1} \quad \text{(the value is still unknown)}. \end{cases}$$

• by a similar computation, we obtain

$$y_{n+1} = y_n + h \sum_{i=0}^{r+1} \gamma_i^* \Delta^i f_{n+1}$$

where

$$\gamma_i^* = \int_{-1}^0 rac{s\,(s+1)\,...\,(s+i-1)}{i!} ds, \,\,i\geq 1,\,\,\gamma_0^* = 1.$$

we check that

$$\gamma_i^* = \gamma_i - \gamma_{i-1}, \ i \ge 1.$$

The Adams-Moulton method with r + 1 steps

• as before, we prefer to write

$$y_{n+1} = y_n + h \sum_{i=-1}^r b_{i,r}^* f_{n-i}$$

where, as it can be easily proved, the $b_{i,r}^*$ satisfy to

$$b_{r,r}^* = (-1)^{r+1} \gamma_{r+1}^*, \ b_{i,r}^* = b_{i,r-1}^* + (-1)^{i+1} \left(\begin{array}{c} r+1\\ i+1 \end{array} \right) \gamma_{r+1}^*.$$

The Adams-Moulton method with r + 1 steps

• one gets the tableau

	$b^*_{-1,r}$	$b_{0,r}^{*}$	$b_{1,r}^{*}$	$b^*_{2,r}$	b _{3,r}	$b_{4,r}^{*}$	$b_{5,r}^{*}$	$b_{6,r}^{*}$	$b_{7,r}^{*}$
r = 0	$\frac{1}{2}$	$\frac{1}{2}$							1
r = 1	$\frac{5}{12}$	$\frac{2}{3}$	$-\frac{1}{12}$						$-\frac{1}{2}$
<i>r</i> = 2	$\frac{9}{24}$	$\frac{19}{24}$	$-\frac{5}{24}$	$\frac{1}{24}$					$-\frac{1}{12}$
<i>r</i> = 3	<u>251</u> 720	<u>323</u> 360	$-\frac{11}{30}$	<u>53</u> 360	$-\frac{19}{720}$				$-\frac{1}{24}$
<i>r</i> = 4	$\frac{95}{288}$	$\frac{1427}{1440}$	$-\frac{133}{240}$	$\frac{241}{720}$	$-\frac{173}{1440}$	$\frac{3}{160}$			$-\frac{19}{720}$
<i>r</i> = 5	$\frac{19087}{60480}$	$\frac{2713}{2520}$	$-\frac{15487}{20160}$	<u>586</u> 945	$-\frac{6737}{20160}$	<u>263</u> 2520	$-\frac{863}{60480}$		$-\frac{3}{160}$
<i>r</i> = 6	$\frac{36799}{120960}$	$\frac{139849}{120960}$	$-\frac{121797}{120960}$	$\frac{123133}{120960}$	$-\frac{88545}{120960}$	$\frac{41499}{120960}$	$-\frac{11351}{120960}$	$\frac{275}{24192}$	$-\frac{863}{60480}$

The Adams-Moulton methods with r + 1 steps

• for *r* = 0

$$y_{n+1} = y_n + \frac{h}{2}(f_{n+1} + f_n)$$

• for r = 1 $y_{n+1} = y_n + \frac{h}{12}(5f_{n+1} + 8f_n - f_{n-1})$ • for r = 2

$$y_{n+1} = y_n + \frac{n}{24}(9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2})$$

The Adams-Moulton methods with r + 1 steps

- this last method (3-steps Adams-Moulton method) is the most commonly used method.
- we show that under some smoothness assumptions this method is of order 4 and stable
- the stability coefficients are much better (smaller) than for the explicit fourth-order Adams-Bashforth method
- of course, we must pay the price since we implicitly define y_{n+1} through $f_{n+1} = f(t_{n+1}, y_{n+1})$.
- a nonlinear system must then be solved.
- to this end, we can consider the following predictor-corrector method

Outline

1. Introduction

2. Euler methods

The forward Euler method Convergence analysis Some examples The implicit Euler scheme

3. One-step methods Preliminary study Runge-Kutta methods

4. Multi-step methods

Adams-Bashforth methods (explicit) Adams-Moulton methods (implicit)

Predictor-corrector method

Backward differentiation formula (BDF)

• To solve the equation

$$y_{n+1} = y_n + \frac{h}{24}(9f(t_{n+1}, y_{n+1}) + 19f_n - 5f_{n-1} + f_{n-2})$$

we can use a successive approximation method (i.e. fixed-point) consisting in building the sequence $\tilde{y}_0, \tilde{y}_1, \tilde{y}_2, ..., \tilde{y}_p$ defined by

$$\begin{cases} \tilde{y}_{p+1} = y_n + \frac{h}{24} \left(9f\left(t_{n+1}, \tilde{y}_p\right) + 19f_n - 5f_{n-1} + f_{n-2}\right) \\ \tilde{y}_0 \text{ to choose.} \end{cases}$$

• one can iterate until convergence (in general \tilde{y}_p converges towards y_{n+1} when p tends to infinity)

- most of the time, one only iterates a few times, even sometimes 1 or 2.
- in addition, the initial value \tilde{y}_0 is often obtained through one step of an explicit method of the same order
- then, we have a predictor-corrector method : the evaluation of \tilde{y}_0 corresponds to a prediction; this value is then next corrected through one or two iterations of a fixed point algorithm.

• finally, the following scheme is often used

 $\begin{cases} \text{Predictor: fourth-order Adams-Bashforth method} \\ \tilde{y}_0 = y_n + \frac{h}{24} \left(55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3} \right) \\ \text{Corrector: one or two iterations of the Adams-Moulton method} \\ \text{of order 4} \\ \tilde{y}_{\rho+1} = y_n + \frac{h}{24} \left(9f \left(t_{n+1}, \tilde{y}_{\rho} \right) + 19f_n - 5f_{n-1} + f_{n-2} \right), \ p = 0, 1. \end{cases}$

- we show that this method is also of order 4
- its stability is clearly better than for the Adams-Bashforth scheme
- the solution to the nonlinear system related to the Adams-Moulton formula is finally done explicitly.

Outline

1. Introduction

2. Euler methods

The forward Euler method Convergence analysis Some examples The implicit Euler scheme

3. One-step methods Preliminary study Runge-Kutta methods

4. Multi-step methods

Adams-Bashforth methods (explicit) Adams-Moulton methods (implicit) Predictor-corrector method Backward differentiation formula (BDF)
Backward differentiation formula

A last category of multi-step method consists of evaluating f at the end of the current step (t_{n+s}, y_{n+s}) , and driving an interpolating polynomial for y with the points (t_{n+s}, \ldots, t_n) . We start from $y'(t_{n+s}) = f(t_{n+s}, y(t_{n+s}))$ and use the approximation

$$p_{n,s}'(t_{n+s}) = f(t_{n+s}, y_{n+s})$$

By doing so we end up with BDF schemes of order s

$$\sum_{k=0}^{s} a_k y_{n+k} = h\beta f(t_{n+s}, y_{n+s})$$

Example

BDF1:
$$y_{n+1} - y_n = hf(t_{n+1}, y_{n+1})$$

BDF2: $y_{n+2} - \frac{4}{3}y_{n+1} + \frac{1}{3}y_n = \frac{2h}{3}f(t_{n+2}, y_{n+2})$

Backward differentiation formula (BDF)

Remarks

- BDF schemes with s stages are of order s
- BDF schemes are implicit
- they are popular for stiff problems because of their stability property
- methods with s > 6 cannot be used

We have seen some numerical methods to solve IVP

- 1. One-step methods of different orders (Euler, RK)
- 2. Multi-step methods (AM, AB, BDF)
- 3. Predictor-corrector methods

They are various differences between the schemes

- The methods can be explicit or implicit, and of different orders of accuracy
- Implicit methods are more stable than explicit methods, but are also more costly
- Usually an adaptive step size solver is necessary
- Writing an efficient ODE solver requires a good knowledge and experience of these methods