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Overview of the content

We already encountered linear system in different situations

• interpolation (global and splines),

• least-square data fit (normal equations),

• finite difference methods (tridiagonal system),

In general, almost all PDE problems (even non-linear ones) require to solve at some point a
linear system of the form

Ax = b, of size N × N

We will study two kind of resolution methods

1. Direct methods,

2. Iterative methods,

The “best” method for solving A quickly and accurately is problem dependent.
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Introduction

There are two families of methods

1. Direct methods : where we obtain the exact solution (up to round-off errors) in a finite
number of operations
• LU factorization, A = LU
• QR factorization (see exercise), A = QR
• Singular value decomposition (SVD), A = UΣV ∗

2. Iterative methods : they consist in building a sequence of vectors xk converging towards
the solution x . It is stopped after a finite number of iterations k chosen in such a way
that xk is close enough to x
• Fixed point iteration: Jacobi, Gauss-Seidel, SOR
• Krylov subspace: conjugate gradient, GMRES, ...
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Introduction

Remarks
• we never use the Cramer’s formulas

A−1 =
comAT

detA

since they need to compute determinants which is a highly computationally expensive
task (too much elementary operations)

• we never compute A−1 to solve Ax = b.
Numerically, this is in the other way : the computation of A−1, and also detA, are a
by-product of the solution to the linear systems.

To compute A−1 we may solve
{Axi = ei , i = 1, ..., n}

where ei is i-th vector of the Rn canonical basis. The i-th column of A−1 is xi .
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Linear system that are easy to solve

A general idea is to try to transform the linear systems into an easier one

Diagonal matrix

all the elements are zero expect the ones on the main diagonal

A =


a1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 an


If A is invertible then all the ai are non zero and the solution of Ax = b is trivial.
If x = (x1, ..., xn) and b = (b1, ..., bn), we have

xi =
bi
ai
, i = 1, ..., n
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Upper (or lower) triangular matrices

All the elements below (or above) the main diagonal are zeros, i.e. aij = 0 for i > j or (i < j)

A =


a11 a12 · · · a1n

0
. . .

...
...

. . .
. . .

...
0 · · · 0 ann


In this case, the linear system writes

a11x1 + a12x2 + ...+ a1nxn = b1
a22x2 + ...+ a2nxn = b2

...
an−1,n−1xn−1 + an−1,nxn = bn−1

annxn = bn

We always use a direct method for the solution, called backward (forward) elimination process
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Backward substitution

we start by solving the last equation ; we substitute the result xn in the previous equation,
which provides xn−1, and so on...

xn = bn /ann
xn−1 = (bn−1 − an−1,nxn) /an−1,n−1

...
xi = (bi − ai,nxn − ai,n−1xn−1 − ...− ai,i+1xi+1) /aii
...

(the triangular matrix A is always assumed to be invertible so aii ̸= 0 for all i)

Cost of the backward procedure

The computation of xi requires: 1 division, n − i multiplications, n − i additions.
Therefore it needs a total of n divisions, n(n−1)

2 multiplications, n(n−1)
2 additions, which is

about O(n2) elementary operations.
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Upper (or lower) triangular matrices

Remarks
• the same algorithm is used for lower triangular systems, which is called forward
substitution,

• we will see that a cost of O(n2) is cheap compared to the cost of more general direct
methods,

• the idea is then to transform more complicated systems into such a triangular form
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Gauss elimination

The Gauss method is a general method for solving a linear system

Ax = b

where A is an invertible matrix (not necessarily square). It needs 3 steps :

1. a procedure called “elimination process” which corresponds to find an invertible matrix M
such that the matrix MA is upper triangular

2. Compute the vector Mb

3. Solve the easier linear system
MAu = Mb

where the matrix MA is upper triangular and can be solved by the backward elimination
process.
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Description of the first step

We will perform elimination thanks to row operations, namely we are allowed to

1. Multiplying a row by a value,

2. Adding one row to another row,

3. Exchanging two rows with each other.

Let A = (ai ,j), i ∈ J1, nK, j ∈ J1, nK
• at least one of the coefficients ai ,1, i ∈ J1, nK of the first column A is not zero, otherwise

the matrix would not be invertible

• we choose one of these nonzero coefficients, called the first pivot of the elimination.

• we exchange the row of the pivot with the first row which in a matrix notation is
equivalent to left multiply A by a specific matrix.

Row exchange can be seen as a matrix operation
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Description of the first step - Row exchange

• indeed, exchanging the rows i and j of A is equivalent to multiply A by

T (i , j) =



1
1

0 1
1

. . .

1
1 0

1
1



← i

← j

↑ ↑
i j

Remark: det(T (i , j)) = −1
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Description of the first step - scaling and adding rows

• we then set

P =

{
I if a1,1 is the pivot and det(P) = 1
T (1, i) if ai ,1 is the pivot and det(P) = −1

• the obtained matrix PA = (αi ,j) is such that α1,1 ̸= 0

• by linear combinations of the first with the other rows of PA, we force the other elements
of the first column of PA under the main diagonal to be zero, the first row remaining
unchanged
• written with matrices, this amounts to left multiply PA by the matrix

E =


1
−α2,1

α1,1
1 0

−α3,1

α1,1
1

... 0
. . .

−αn,1

α1,1
1


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Description of the 1st step

• hence the matrix B = EPA writes

B =


α1,1 α1,2 · · · α1,n

0 b2,2 · · · b2,n
...

...
...

0 bn,2 · · · bn,n

 , bij = αij −
αi1

α11
α1j , (i , j) ∈ J2, nK

Remarks
• simplicity of the calculations

• det(E ) = 1 so det(B) = ±det(A), and B is still invertible

• as a consequence, at least one of the bi ,2, i ∈ J2, nK is not zero

• the second step of the elimination process consists in doing the same operations but only
on the sub-matrix (bi ,j)2≤i ,j≤n
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Description of the kth step

• by setting
A = A1 = (ai ,j) = (a1i ,j), P = P1, P1A1 = (α1

i ,j)

E = E1, B = A2 = E1P1A1 = (a2i ,j)

one gets finally, at the (k − 1)th step of the elimination process, a matrix

Ak = Ek−1Pk−1 . . .E2P2E1P1A1

which has the form
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Description of the kth step

Ak =



ak1,1 ak1,2 · · · · · · · · · ak1,n
0 ak2,2 · · · · · · · · · ak2,n
...

. . .
. . .

...
... 0 akk,k · · · akk,n
...

...
...

...
0 · · · 0 akn,k · · · akn,n


=



α1
1,1 α1

1,2 · · · · · · · · · α1
1,n

0 α2
2,2 · · · · · · · · · α2

2,n
...

. . .
. . .

...
... 0 akk,k · · · akk,n
...

...
...

...
0 · · · 0 akn,k · · · akn,n


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Description of the kth step

• since det(Ak) = ±det(A), the matrix Ak is invertible and then at least one of the aki ,k ,
i ∈ Jk, nK is not zero.

• we choose one of these nonzero elements as a pivot.

• we exchange the pivot row with the kth row of Ak which is equivalent to multiply Ak by a
matrix Pk which is the identity or a transposition matrix

• then the element αk
k,k of the matrix PkAk = (αk

i ,j) is nonzero

• the elimination corresponds to the left multiplication of the matrix PkAk by the matrix Ek
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Elimination matrix at the kth step

Ek =



1 0 · · · · · · · · · 0

0
. . .

. . .
...

... 0 1
...

... −αk
k+1,k

αk
k,k

. . .
...

...
...

. . . 0

0 0 −αk
n,k

αk
k,k

0 1


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• after the (n − 1)-th step, the matrix

An = En−1Pn−1An−1 = En−1Pn−1 . . .E1P1A

is then upper triangular

• we have found an invertible matrix

M = En−1Pn−1An−1 = En−1Pn−1

such that MA is upper triangular

Theorem

Let A a an invertible or singular matrix. There exists at least an invertible matrix M such that
MA is upper triangular
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Illustration of the algorithm

Figure: Illustration of the Gaussian elimination algorithm. From Trefeten and Bau, Numerical Linear Algebra
III (1997)
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Example

Resolution of a 3× 3 linear system

 5 2 1
5 −6 2
−4 2 1

 x1
x2
x3

 =

 12
−1
3


here

A = A1 =

 5 2 1
5 −6 2
−4 2 1

 and b = b1 =

 12
−1
3


• step 1 :

P1 = I , E1 =

 1 0 0
−1 1 0

4
5 0 1

 , A2 =

 5 2 1
0 −8 1
0 18

5
9
5

 , b2 =

 12
−13

63
5


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Example

Resolution of a 3× 3 linear system

• step 2 :

P2 = I , E2 =

 1 0 0
0 1 0
0 9

20 1

 , A3 =

 5 2 1
0 −8 1
0 0 9

4

 , b3 =

 12
−13

27
4


• backward process :

x3 = 3, x2 = 2, x1 = 1

Remark:
• we can compute M

M = E2E1 =

 1 0 0
−1 1 0
7
20

9
20 1


• but the expression of M is not useful!
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Choice of the pivot

• at the beginning of the kth step of the elimination process, theoretically one can choose
any coefficient aki ,k which is nonzero (i ∈ Jk , nK)
• in particular, if akk,k is nonzero we can choose it as the pivot (and then Pk = I )

• however, this way of proceeding can lead to round-off errors and an incorrect solution
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Example

Let us consider the system (
10−4 1

1 1

)(
x1
x2

)
=

(
1
2

)
The exact solution is

x1 =
10000

9999
≃ 1, x2 =

9998

9999
≃ 1

• let us assume that the computations are realized up to 3 digits
• first case:

10−4 1 1
1 1 2

10−4 1 1
0 −9.99 103 −9.99 103

x2 = 1 and x1 = 0!
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Example

Let us consider the system (
10−4 1

1 1

)(
x1
x2

)
=

(
1
2

)
• second case:

1 1 2
10−4 1 1

1 1 2
0 9.99 10−1 9.99 10−1

x2 = 1 and x1 = 1

• the rule is to rather use the pivot which corresponds to the coefficient with largest
amplitude

• The partial pivot strategy : we determine the element aki ,k (or one of the elements aki ,k)
such that k ≤ i ≤ n and ∣∣∣aki ,k ∣∣∣ = max

k≤j≤n

∣∣∣akj ,k ∣∣∣ .
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Cost of Gauss method

• To get from Ak to Ak+1 we need

n − k divisions, (n − k) (n − k + 1) additions and multiplications

• leading a total of

n (n − 1)

2
divisions,

n3 − n

3
multiplications and additions

or
4n3 + 3n2 − 7n

6
elementary operations

• we need to add the n2 elementary operations for the forward substitution.

• When n is large, the terms scaling in n2 and n small compared to n3 and the global
number of operations is around

2n3

3
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Remarks

• a cost of O(n3) is huge for large linear systems !
• the numerical stability of Gaussian elimination, even with partial pivoting, is not obvious.
A proper backward analysis is required: the key relies in the amplification of the entries
akk,k during the elimination process, called the growth factor

Figure: From Trefeten and Bau, Numerical Linear Algebra III (1997)
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Remarks

• What if we have many right hand side vectors, or we don’t know b right away ?

• Note that determining transformation M such that MA = U does not depend on b
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LU factorization

• Let us suppose for a while that we do not use a pivot strategy, so if akk,k is non-zero we
use it as the pivot

• if we can do so we have

P1 = P2 = · · · = Pn−1 = I and M = En−1En−2 . . .E1

• M being the product of lower triangular matrices it is lower triangular, and its inverse is
also lower triangular

L = M−1
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LU factorization

• the matrix A can then be written
A = LU

where L is lower triangular and U is upper triangular such as

L = (En−1En−2 . . .E1)
−1, U = (En−1En−2 . . .E1)A

Thanks to the first part, we have all the framework to express L and U explicitely !
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LU factorisation

• we already know how to compute U since at the n-th step

U = An =


an1,1 · · · · · · an1,n

0 an2,2
...

...
. . .

. . .
...

0 · · · 0 ann,n


• the matrix L is obtained from the matrices Ek !
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LU factorization

Ek =



1 0 · · · · · · · · · 0

0
. . .

. . .
...

... 0 1
...

... −lk+1,k
. . .

...
...

...
. . . 0

0 0 −ln,k 0 1


with li,k =

aki,k
akk,k

It is easy to see

E−1
k =



1 0 · · · · · · · · · 0

0
. . .

. . .
...

... 0 1
...

... lk+1,k
. . .

...
...

...
. . . 0

0 0 ln,k 0 1


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LU factorization

then we luckily have

L = E−1
1 E−1

2 . . .E−1
n−1 =



1 0 · · · · · · · · · · · · · · · 0

l2,1 1
. . .

...

l3,1 l3,2 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1

. . .
...

... lk+1,k
. . .

. . .
...

...
...

. . .
. . . 0

ln,1 · · · · · · · · · ln,k · · · ln,n−1 1


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Theorem: LU factorisation

Let A = (ai ,j) be a square matrix of size n such as all the submatrices

∆k =

 a1,1 · · · a1,k
...

...
ak,1 · · · ak,k

 k ∈ J1, nK

are invertible. Then there is a unique lower triangular matrix L = (li ,j) with li ,i = 1 for all
i ∈ J1, nK and an upper triangular matrix U such as

A = LU

Remark: if we allow row permutations (a pivoting startegy), we have that any square matrix
admits a PLU decomposition such that

PA = LU

Remark 2: this is not obvious, because we may apply a permutation at each kth-step !
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LU factorization pseudo-code

LU pseudo-code without pivoting

Initialize L to an identity matrix of dimension n × n and U = A

For i = 1 · · · n
For j = (i + 1), · · · n

ℓji=uji/uii
Uj → Uj − ℓjiUi

return L,U

41 / 77



LU factorization pseudo-code with pivoting

LU pseudo-code with simple pivoting

Initialize L to an identity matrix of dimension n × n and U = A

For i = 1 · · · n
Let k = i
While uii = 0

Swap row Ui with row Uk+1

Swap row Pi with row Pk+1

k = k + 1
For j = (i + 1), · · · n

ℓji=uji/uii
Uj → Uj − ℓjiUi

return L,U

Remark: the partial pivoting strategy consists in looking for the max uk,i value over all
remaining rows at the k-th step, and then swapping rows
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Solving a linear system with LU factorization

• we would like to solve
Ax = b ⇐⇒ LUx = b

• Once we have L and U, we first solve

Ly = b

with backward substitution (we have y = Ux)

• then we solve
Ux = y

with forward substitution
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Factorization cost

• LU factorisation has the same cost as Gaussian elimination, that is 2n3

3 elementary
operations

• we need to add forward-backward substitution which adds n2 elementary operations

• Once the LU factorization is done, we can treat multiple right-hand sides b

• For positive-definite matrices, one can write A = LLT , which reduces the cost by a factor
2. The associated method is called Cholesky factorization (see exercise).

• When the matrix contains many zeros, the computational cost can be highly reduced. We
talk about sparse matrices
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A few words on sparse matrices

The discretization of many engineering problems requires to solve linear systems with only a
few non-zero entries (nz)

Figure: Example of sparsity patterns for two symmetric positive definite matrices. Nonzero elements are
indicated by dots. From Nick Higham blog 46 / 77



A few words on sparse matrices

Bandwidth of a matrix

The bandwidth of a matrix A is the smallest non-negative integer m such that

aij = 0, for |i − j | > m

The LU decomposition does not increase the bandwidth !
The cost of LU factorization reduces to O(m2N)

Example

Gaussian elimination for a tridiagonal matrix (Thomas algorithm) - O(N) operations !

Moreover reordering strategies can be highly beneficial and highlight a sparsity pattern.

Special libraries are designed for sparse matrices and are routinely used in the industry: MUMPS,
pardiso, superLU, UMFPACK, ...
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Introduction

Given an invertible matrix A inversible, we would like to determine the solution to the linear
system

Au = b

by an iterative method. We focus the analysis on square matrices.
we would like to build a sequence of vectors (uk)k≥0 such that

1. {
uk+1 = Buk + c , ∀ k ≥ 0
u0 given

where the matrix B and the vector c are defined from A and b

2. the sequence (uk)k≥0 converges and the limit u is the solution to the linear system.

Remark: we solve the system only computing matrix-vector products at each iteration
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Some basic notions

Convergence of an iterative method

These statements are equivalent :

• the iterative method converges, that is (uk)k≥0 → u for any initial u0
• the spectral radius is less than 1

ρ(B) < 1

• for at least one matrix norm ∥.∥
∥B∥ < 1

Remark: the iterative method is a fixed-point approach for

f : Cn → Cn

v → Bv + c

which is a contraction when ∥B∥ < 1
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A few notes on matrix norms and spectral radius

Let |.| be a vector norm. The induced matrix norm of a m × n matrix writes

∥A∥ = max
x ̸=0

|Ax |
|x |

= max
|x|=1
|Ax |.

We have consistency properties

∥AB∥ ≤ ∥A∥∥B∥, |Ax | ≤ ∥A∥|x |

in addition to the usual norm properties.

Remark: there are also non-induced matrix norms (example Fröbenius norm)
Remark 2: for any induced norm ρ(A) ≤ ∥A∥
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Some induced matrix norms

• 2-norm

∥A∥2 =
√
ρ(ATA)

with ρ(B) = max{|λi |, λi is an eigenvalue ofB}
• ∞-norm

∥A∥∞ = max
1≤i≤m

n∑
j=1

|aij |

• 1-norm

∥A∥1 = max
1≤j≤n

m∑
i=1

|aij |

Remark: the 2-norm is harder to compute in practice
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Speed of convergence

Let ∥.∥ be a matrix norm and u such that

u = Bu + c

If we consider the iterative method

uk+1 = Buk + c , ∀ k ≥ 0

we have
|uk − u| ≤ ∥Bk∥|u0 − u|

The convergence speed of uk towards u depends on the convergence speed of Bk towards 0,
so we need ∥B∥ ≤ 1. Moreover, we have (Gelfand’s formula)

lim
k→∞

∥Bk∥1/k = ρ(B).

Hence the spectral radius ρ(B) tells us about the speed of convergence of the iterative method.
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Speed of convergence - intuition

Figure: From Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing
pain.
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Another matrix decomposition

Given a linear system
Au = b,

we suppose that A is invertible and that it can be written under the form

A = M − N

where M and N are two matrices with M invertible.

We have
Au = b ⇐⇒ Mu = Nu + b ⇐⇒ u = M−1Nu +M−1b

If we set B = M−1N and c = M−1b, we obtain u = Bu + c and the iterative method reads

uk+1 = Buk + c = M−1Nuk +M−1b
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Another matrix decomposition

Remarks

• we do not compute M−1 ! it is enough to solve at each iteration

Muk+1 = Nuk + b

• to this end we need to choose M such that the system is easy to solve
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Towards a decomposition of A

Let

A =



a1,1 a1,2 · · · · · · · · · · · · a1,n

a2,1 a2,2
. . .

...
...

. . .
. . .

. . . −F
...

...
. . . D

. . .
...

... −E . . .
. . .

. . .
...

...
. . . an−1,n−1 an−1,n

an,1 · · · · · · · · · · · · an,n−1 an,n


A = D − E − F

D diagonal matrix, E lower triangular matrix, F upper triangular matrix

We suppose ai ,i ̸= 0 for all i ∈ J1, nK
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Jacobi iterative method

The simplest decomposition is
M = D, N = E + F

Au = b ⇐⇒ Du = (E + F )u + b ⇐⇒ u = D−1(E + F )u + D−1b

we obtain the Jacobi method

Duk+1 = (E + F )uk + b ⇐⇒ uk+1 = D−1(E + F )uk + D−1b

The Jacobi iteration matrix is
J = D−1(E + F )
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Jacobi algorithm


u0 given
For k = 0 to ... (stopping criterion)[

For i = 1 to n

uk+1
i :=

(
−
∑

p ̸=i aipu
k
p + bi

)
/aii .

Remarks

• we need to keep in memory all the ukp to obtain uk+1
i

• we can reduce the memory usage by replacing the computed ukp by uk+1
p in the sum
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Gauss-Seidel algorithm

This gives the Gauss-Seidel algorithm
u0 given
For k = 0 to ... (stopping criterion)[

For i = 1 to n

uk+1
i :=

(
−
∑

p<i aipu
k+1
p −

∑
p>i aipu

k
p + bi

)
/aii .
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Gauss-Seidel iterative method

In its matrix form, we have
Duk+1 = Euk+1 + Fuk + b

which we rewrite as

(D − E )uk+1 = Fuk + b ⇐⇒ uk+1 = (D − E )−1Fuk + (D − E )−1b

here we have
M = D − E , N = F

(M is invertible since ai ,i ̸= 0 for all i ∈ J1, nK)

The iteration Gauss-Seidel matrix L1 is

L1 = (D − E )−1F
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Relaxation method

Remarks
• If the Gauss-Seidel method converges, we can add a real parameter ω ̸= 0 such that

A = M − N =

(
D

ω
− E

)
−
(
1− ω

ω
D + F

)
• if the method converges ρ(L1) < 1, and by continuity of the spectral radius the iterative
method must converge when ω is close to 1

• a similar approach could be used for any iterative method

The point-wise update is at the k-th iteration is

uk+1
i = (1− ω)uki +

ω

aii

bi −
∑
j<i

aiju
k+1
j −

∑
j>i

aiju
k
j

 , i = 1, 2, . . . , n.
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Relaxation method

The associated iterative method is(
D

ω
− E

)
uk+1 =

(
1− ω

ω
D + F

)
uk + b

The iterative matrix is called relaxation matrix Lω

Lω =

(
D

ω
− E

)−1(1− ω

ω
D + F

)

Remark

The relaxation method consists in finding

• an interval I (0 /∈ I ) such that ω ∈ I ⇒ ρ(Lω) < 1

• an optimal relaxation parameter ω0 ∈ I such that

ρ(Lω0) = min
ω∈I

ρ(Lω)
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Convergence of Jacobi, Gauss-Seidel and relaxation methods

Example

• For

A1 =

 1 2 −2
1 1 1
2 2 1

 .

we show that ρ(J) < 1 < ρ(L1).
• For

A2 =

 2 −1 1
2 2 2
−1 −1 2

 .

we show that ρ(L1) < 1 < ρ(J).
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Convergence of Jacobi, Gauss-Seidel and relaxation methods

Theorem: necessary condition for the convergence of the relaxation method

for all ω ̸= 0, we have
ρ(Lω) ≥ |ω − 1|

thus if ω /∈]0, 2[ the relaxation method does not converge.

Theorem: sufficient convergence condition for the relaxation method

If A is a symmetric positive-definite matrix, the relaxation method converges for all ω ∈]0, 2[.
In particular the Gauss-Seidel method converges.

Remark: the theorem holds for hermitian matrices.
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Convergence of Jacobi, Gauss-Seidel and relaxation methods

Theorem

If A is strictly diagonal dominant

∀i = 1, ...,N |aii | >
∑
j ̸=i

|aij |

then A is invertible and the Gauss-Seidel and Jacobi methods converge.
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Convergence of Jacobi, Gauss-Seidel and relaxation methods

Remarks:
• For many systems coming from discretization of PDEs, the Gauss-Seidel method
converges faster than the Jacobi method

• For a large family of such systems, we can show that there exists a optimal parameter ω⋆

for which the relaxation method is way more efficient: the number of required iterations
for a given precision drops when ω ≈ ω⋆
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Convergence of Jacobi, Gauss-Seidel and relaxation methods

Let us note
L = D−1E , U = D−1F

hence

A = D (I − L− U) , J = L+ U

Lω = (I − ωL)−1 ((1− ω) I + ωU) .

Definition

we say that A if of type (V ), if for α ̸= 0, the eigenvalues of J (α) = αL+ 1
αU are

independent of α.

Remarks
• tridiagonal matrices are of type (V )

• many matrices form PDE discretization are of type (V )
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Theorem

Let A be a matrix of type (V ). Then

(i) ρ (L1) = ρ (J)2

so Gauss-Seidel method converges if and only if Jacobi mathod converges, and it converges twice as
fast.

(ii) If moreover, the eigenalues of J are real and ρ (J) < 1, then ω∗ = 2

1+
√

1−ρ(J)2

The graph of ρ (Lω) has the form (µ = ρ(J)):

Figure: From Wikipedia
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Summary of the contents

We have seen two families of methods for solving linear systems

Direct methods :

1. The modern form of Gaussian Elimination is called LU decomposition

2. A pivoting strategy is required for numerical stability

3. Cholesky decomposition is used for positive-definite matrices

4. Special algorithms are used for sparse matrices to reduce the computational cost

Iterative methods :

1. We have seen three types of fixed-point algorithms (Jacobi, Gauss-Seidel, SOR)

2. The convergence depends on the spectral radius of the matrix

3. They are advocated for very large systems, where direct methods become too costly
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A few words about conditioning

Conditioning has a crucial role when solving linear systems. For a given induced matrix norm,
it is defined as

κ(A) = ∥A∥∥A−1∥

Forward error analysis

Let A be invertible and u and u + û be the solutions of the linear systems

Au = b, A(u + û) = b + b̂

If b ̸= 0 then the inequality
|û − u|
|u|

≤ κ(A)
|b̂ − b|
|b|

holds and it is optimal.
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A few words about conditioning

Backward error analysis

Let A be invertible and u and u + ũ be the solutions of the linear systems

Au = b, (A+ Ã)(u + ũ) = b

If b ̸= 0 then the inequality
|ũ|
|u + ũ|

≤ κ(A)
∥Ã∥
∥A∥

holds and it is optimal

If A is symmetric positive definite with eigenvalues λ1 ≤ · · · ≤ λn

κ2(A) =
λn

λ1

For a more general matrix we use the singular values of A to define κ2(A).
In practice, only the order of magnitude of κ(A) matters.
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