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Overview of the content

We will see methods to find solutions of nonlinear equations of the form

F(x) = 0

with F : Rn → Rn and x ∈ Rn.
Most of the time, solutions are not known explicitly and we need numerical methods.
Finding zeros of a function has an important connection with optimization.

Objectives

• describe some of the most useful numerical methods

• study the convergence of these methods

• evaluate the efficiency i.e. the convergence speed and cost of the associated sequences

• adapt some methods to higher dimensional problems
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Preliminary analysis

Problem description

• Sometimes we know how to explicitly solve some equations.
For example

x2 − x − 1 = 0

has two solutions:
1 +

√
5

2
and

1−
√
5

2
• However, if one considers the equation

cos x = x ,

a mathematical theorem (which one ?) indicates that it has a unique solution between 0
and 1, but it cannot be explicitly written.

• Nevertheless, in scientific computing, an approximation of the solution will be sufficient
with an error estimate if possible.
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Preliminary analysis

Problem description

Let us consider the following 1D equation

f (x) = 0, x ∈ R

where f is a real-valued function with one parameter.

• We assume that this equation admits (at least) one root r , such that f (r) = 0.

• The idea is to build a sequence (xn) that converges towards r .

• Hence, the term xn of the sequence will be an approximation of r , the accuracy depending
on the choice of n.

Question

How to build the sequence (xn) ?
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Preliminary analysis

Problem description

Let us consider the following 1D equation

f (x) = 0, x ∈ R

where f is a real-valued function with one parameter.

Before using a numerical method, it is better (if possible)

• to check that the equation has at least one solution

• to determine the number of roots

• to localize the roots i.e. to determine some intervals [ai , bi ] in which the considered
equation has one and only one solution

8 / 81



Intermediate value theorem

To this end, we have

Intermediate value theorem - existence of roots

Let I be an interval in R, f an application from I into R, continuous on I . If there exist two
elements a and b in I such that a < b and f (a)f (b) ≤ 0, then there exists r ∈ [a, b] such that
f (r) = 0.

Intermediate value theorem - root unicity

Let a and b two real numbers such that a < b and f an application from [a, b] into R,
continuous and strictly monotone on [a, b]. If f (a)f (b) ≤ 0, then there exists a unique value
r ∈ [a, b] such that f (r) = 0.
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Example

Solve on R
x − 0.2 sin (x)− 0.5 = 0

Let f be the function defined on R by f (x) = x − 0.2 sin (x)− 0.5

The function f is continuous and differentiable on R and since we have for any x

f ′(x) = 1− 0.2 cos (x) > 0

this function is also strictly increasing on R. In addition, since

lim
x→−∞

f (x) = −∞ and lim
x→+∞

f (x) = +∞

we deduce that f admits a unique root on R.

More precisely, f (0) = −0.5 < 0 and f (π) = π − 0.5 > 0, f admits a unique root in R
located between 0 and π.
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Example

Solve in R
cos (x) = e−x

Let f be the function defined on R by f (x) = cos (x)− e−x

The function f is continuous and differentiable on R and since we have for any x

f ′(x) = − sin (x) + e−x .

Here it is difficult to study the sign of f ′ and deduce the variations of f , since we find a
“similar” problem.
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Example

Solve in R
cos (x) = e−x

Let us now consider the function g defined on R by g(x) = ex cos (x)− 1 = ex f (x)

The function g is continuous and differentiable in R and since we have for any x

g ′(x) = ex(cos (x)− sin (x)) =
√
2ex cos

(
x +

π

4

)
.

this function is also strictly monotone on the intervals [π4 + kπ, 5π4 + kπ], k ∈ Z .

The study of the successive signs of g(π4 + kπ) allows to localize its roots.

12 / 81



Outline

1. Overview

2. Problem description

3. A few standard algorithms
Bisection method
Fixed-point method
Convergence speed
Newton’s method
The secant method
Comparison between the algorithms

4. Convergence acceleration

5. Systems of nonlinear equations

13 / 81



Outline

1. Overview

2. Problem description

3. A few standard algorithms
Bisection method
Fixed-point method
Convergence speed
Newton’s method
The secant method
Comparison between the algorithms

4. Convergence acceleration

5. Systems of nonlinear equations

14 / 81



Bisection method

Principle of the bisection method

we start with an initial interval that contains a root and we build a sequence of intervals such that

• the root lies inside all the intervals

• the length of the intervals tends towards 0

One gets a converging process for localizing the roots by subdividing.
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Bisection method

An interval [a, b] is defined by a and b. To define the sequence of intervals, it is equivalent to
fix the sequences (an) and (bn) through a and b. Let f : [a, b] → R be a continuous function
such that f (a) f (b) ≤ 0.

Bisection pseudo-code

a0 = a, b0 = b;
forall n from 0 to N do

m := (an+bn)
2 ;

if f (a) f (m) ≤ 0 then
an+1 := an, bn+1 := m;

else
an+1 := m, bn+1 := bn;

end

end
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Bisection algorithm

• The two sequences (an) and (bn) satisfy by construction
• ∀ n ∈ N, an ≤ an+1 ≤ bn+1 ≤ bn
• ∀ n ∈ N, |an − bn| = |a−b|

2n

• ∀ n ∈ N, f (an)f (a) ≥ 0, f (bn)f (a) ≤ 0

• consequently, the two sequences (an) and (bn) are adjacent and they converge towards
the same limit r ∈ [a, b].

• since f is continuous on [a, b], the sequences (f (an)) and (f (bn)) converge towards f (r).

• according to the sign of f (a), they moreover satisfy, for any n ∈ N

(f (an) ≤ 0 and f (bn) ≥ 0) or (f (an) ≥ 0 and f (bn) ≤ 0) .

• in both cases, one gets at the limit that f (r) ≤ 0 and f (r) ≥ 0, which implies that
f (r) = 0.
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Bisection method

Remarks
• When f is continuous on [a, b] and f (a)f (b) ≤ 0, this method converges.

• Only one evaluation per iteration of the function f is required

• Since we have
an ≤ r ≤ bn, ∀n ≥ 0

we can choose indifferently aN or bN as the approximation of the root, aN being then a
lower approximate value and bN an upper approximate estimate

• we then have the following accuracy

|aN − r | ≤ |aN − bN | =
|a− b|
2N
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Bisection algorithm

Remarks
• according to the expected precision ϵ , we can a priori determine the stopping index N

such that

|aN − bN | =
|a− b|
2N

< ϵ

N ≥ floor

(
ln (|a− b|)− ln (ϵ)

ln (2)

)
+ 1

• This method converges even if the function f has a few roots in the initial interval.
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Fixed-point methods

Principle

Searching for a solution to the equation f (x) = 0 can be seen as searching the solution to

g(x) = x

for example by setting

• g(x) = x − f (x)

• g(x) = x − f (x)

α
, with α ̸= 0

• g(x) = x − f (x)

α(x)
, with ∀ x ∈ I , α(x) ̸= 0

Therefore, the root-finding for f amounts to searching for a fixed-point of g .
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Fixed-point methods

We can then use the following algorithm

x0 given;
forall n from 0 to . . . do

xn+1 = g(xn)
end

Indeed, let us recall the following analysis result

Theorem

Let I be a closed and stable interval by g , ξ ∈ I and (xn) the sequence defined by the relations
x0 = ξ and xn+1 = g(xn),∀n ∈ N.
In addition, we assume that f is continuous on I .
If the sequence (xn) converges, its limit is a fixed-point of g in I

A fixed-point of g is hence a root of f .
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Fixed-point methods

Figure: Fixed-point iterations for some nonlinear functions. From M. T. Heath, Scientific computing: an
introductory survey (2018)

23 / 81



Fixed-point theorem

In particular, we have the

Fixed-point theorem

Let us assume that I is closed, g is a contraction mapping on I with ratio k ∈ [0, 1) and I is
stable by g . Then

• g admits on I a unique fixed-point r ∈ I .

• for any initial guess ξ ∈ I , the sequence (xn), defined by x0 = ξ and the recursive relation
xn+1 = g(xn), converges towards the fixed-point r .

• we have the following estimates

∀ n ∈ N, |xn − r | ≤ kn

1− k
|x1 − x0|

∀ n ∈ N, |xn − r | ≤ k

1− k
|xn − xn−1|
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Fixed-point methods

Example

Let f be the function defined on I = [0,+∞[ by

f (x) = x − e−(1+x)

This function has a unique root r between 0 and 1
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Fixed-point methods

Example

Let f be the function defined on I = [0,+∞[ by

f (x) = x − e−(1+x)

Algorithm 1: Let g be the function defined on I by

g(x) = e−(1+x)

We easily check that I is stable by g , that g is a contraction mapping on I and that I is closed

Therefore, for any ξ ∈ I , the sequence (xn) defined by x0 = ξ and xn+1 = g(xn), converges
towards the unique fixed-point of g which is also the root of f
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Fixed-point methods

Example

Let f be the function defined on I = [0,+∞[ by

f (x) = x − e−(1+x)

Algorithm 2: Let us now consider h as the function defined on I by

h(x) = x2e(1+x)

The function h admits two fixed points: 0 and r in I

Let us study, for any ξ ∈ I , the asymptotic behavior of the sequence (xn) defined by x0 = ξ
and xn+1 = h(xn)
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Fixed-point methods

Example

Let f be the function on I = [0,+∞[ defined by

f (x) = x − e−(1+x)

For the fixed-point function h, we show that:

• if ξ ∈ [0, r [ then the sequence (xn) converges towards 0

• if ξ = r then the sequence (xn) is constant

• if ξ ∈]r ,+∞[ the sequence (xn) diverges towards +∞

This second algorithm is then unadapted to get an approximation of the root r !
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Fixed-point methods

Stability of the fixed-point

Let g be a map from I into I that admits a fixed-point r ∈ I .

• We say that r is an attractive or stable fixed-point if there exists η > 0 such that any
sequence (xn) defined by x0 ∈]r − η, r + η[∩I , the recursive relation xn+1 = g(xn)
converges towards r .

• We say that r is a repulsive or unstable fixed-point when for any sequence (xn) defined by
the recursive relation xn+1 = g(xn), there exists n0 ∈ N such that for any n ≥ n0, the
sequence (xn) moves away from r .
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Fixed-point methods

Theorem

Let g be a map from I into I that admits a fixed-point r ∈ I . We suppose that g is
differentiable at r .

• if |g ′(r)| < 1, then r is an attractive fixed-point.

• if |g ′(r)| > 1, then r is a repulsive fixed-point.

• if |g ′(r)| = 1, then both cases can arise

Remark

in the previous example, we have |h′(r)| > 1. The fixed point is repulsive and cannot be
attained.
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Convergence speed

Let (xn) be a sequence that converges towards a number r .

• we say that the convergence speed is linear, if there exists C , 0 < C < 1 such that

lim
n→∞

|xn+1 − r |
|xn − r |

= C . (1)

• the number C is called the convergence speed.

• we say that the convergence is at least linear, if there exists C , 0 < C < 1 such that

|xn+1 − r | ≤ C |xn − r | ∀n ≥ 0
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Convergence speed

• we say that the convergence is of order q, if there exists q > 1, C > 0 such that

lim
n→∞

|xn+1 − r |
|xn − r |q

= C

• we say that the convergence is at least of order q, if there exists q > 1, C > 0 such that

|xn+1 − r | ≤ C |xn − r |q ∀n ≥ 0

• a second-order convergence is also called quadratic and a convergence of order 3 is said to
be cubic.
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Convergence speed

Practical meaning

Let us set for any n ∈ N, en = |xn − r |. The number en represents the error when we
approximate r by xn.

• if the convergence speed is linear then there exists 0 < C < 1 such that en+1 ∼ Cen
• this means that asymptotically the error is reduced by a factor C at each iteration.

• the smaller will be the ratio C , the faster will be the convergence of the sequence
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Convergence speed

Practical meaning

• if the convergence is of order q > 1, then there exists C > 0 such that en+1 ∼ Ceqn .

• let us then set for all n ∈ N, λn = − log10 en.

• the number λn is a ”measure” of the number of exact decimals of xn.

• indeed if en = 10−5 then λn = 5, if en = 10−10 then λn = 10, etc...

• we have
λn+1 ∼ qλn.

which means that asymptotically the number xn+1 has q times more ”exact decimals”
than xn.

• the larger will be the convergence order, the faster will be the convergence of the sequence
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Application to the fixed-point method

Order of convergence of a fixed-point method

Let (xn) be a sequence defined by the recursive relation xn+1 = g(xn) and let r be a
fixed-point of g .
If g is a three times differentiable function in I , then from the Taylor-Young formula, we have
for any n ∈ N

xn+1 − r = g(xn)− g(r)

= g ′(r)(xn − r) +
g ′′(r)

2
(xn − r)2 +

g ′′′(r)

6
(xn − r)3 + o((xn − r)3)

that is

en+1 = g ′(r)en +
g ′′(r)

2
e2n +

g ′′′(r)

6
e3n + o(e3n)
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Application to the fixed-point method

Order of convergence of a fixed-point method

en+1 = g ′(r)en +
g ′′(r)

2
e2n +

g ′′′(r)

6
e3n + o(e3n)

Several cases then appear

• if g ′(r) ̸= 0 and |g ′(r)| < 1, then en+1 ∼ Cen with C = |g ′(r)|.
The sequence (xn) converges linearly to r .

• if g ′(r) = 0 and g ′′(r) ̸= 0, then en+1 ∼ Ce2n with C = |g ′′(r)|
2 .

The sequence (xn) is convergent of order 2.

• if g ′(r) = g ′′(r) = 0 and g ′′′(r) ̸= 0, then en+1 ∼ Ce3n with C = |g ′′′(r)|
6 .

The sequence (xn) is converging of order 3.

• and so on, if we assume more smoothness on g .
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The Newton method

Description of the method

• if f is an affine function
f (x) = ax + b (a ̸= 0)

the root is r = −b/a.

• the idea is to substitute f by an affine approximation → we can use its tangent.
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The Newton method

Description of the method

Let us assume that f is a function defined on an interval I , differentiable on I and such that it
has a root r in I

• let x0 be a point I close enough to the root r

• we then have

f (x) = f (x0) + f ′(x0)(x − x0) + o(x − x0)

= fx0(x) + o(x − x0)

with fx0(x) = f ′(x0)(x − x0) + f (x0)
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The Newton method

Description of the method

• the affine function fx0 admits a root x1 if and only if f ′(x0) ̸= 0, and in this case

x1 = x0 −
f (x0)

f ′(x0)

• we can expect then that x1 will be closer to the root r than x0 i.e. that x1 is a better
estimate of r

• we can then iterate with x1 instead of x0 and so on...

• we expect to improve the approximation of the root r through successive iterations.
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The Newton method

Newton’s algorithm

x0 given;
forall n from 0 to . . . do

xn+1 = xn − f (xn)
f ′(xn)

end

Remarks

• to have a well-defined sequence (xn), we must have f ′(xn) ̸= 0, ∀n ∈ N.
• at each iteration, we have to evaluate two functions: computation of f (xn) and
computation of f ′(xn)

• the Newton method is a fixed-point method with g(x) = x − f (x)
f ′(x)
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Convergence of the Newton method

Theorem

Let f be an application from I into I and r ∈ I a root of the function f . We assume that f is
twice differentiable in a neighborhood of r and that f ′(r) ̸= 0.
Then, there exists η > 0 such that for any x0 ∈]r − η, r + η[∩I the Newton method generates
a well-defined sequence (xn) which converges at least quadratically towards r .

Indeed

g ′(x) = 1− (f ′(x))2 − f (x)f ′(x)

(f ′(x))2

and so g ′(r) = 0
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Convergence of the Newton method

Remarks

• this result indicates that if x0 is close enough to r (and if f ′(r) ̸= 0) then the method
converges

• when there is convergence, it is fast (at least of order 2)

• if x0 is not close enough to r , then divergence may occur

• in practice, there is generally no way to know if x0 is close enough to r

• if the derivative does not exist or is discontinuous at the root, Newton’s method may fail
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Newton method

Example

Example : x2 = a Let a > 0

• we search for an approximation of
√
a

• here f (x) = x2 − a and the Newton algorithm writes

xn+1 = xn −
x2n − a

2xn
=

1

2

(
xn +

a

xn

)
• it can be easily shown that for any x0 > 0 this sequence converges towards

√
a
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Newton method

Example

Example : x2 = a for a = 2 and x0 = 1 ones gets

x0 = 1

x1 =
3

2
= 1.5

x2 =
17

12
= 1.41666666666666...

x3 =
577

408
= 1.41421568627450...

x4 =
665857

470832
= 1.41421356237468...
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Newton method

Example : x2 = a

for a = 2 and x0 = 1 one gets

x0 = 1

x1 =
3

2
= 1.5

x2 =
17

12
= 1.41666666666666...

x3 =
577

408
= 1.41421568627450...

x4 =
665857

470832
= 1.41421356237468...

let us remind us that √
2 = 1.414213562373095...
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Another remark on Newton method

One Newton iteration xn+1 = xn − f (xn)/f
′(xn) requires the evaluation of two functions: f (xn)

and f ′(xn).

• the derivative f must be known and we must be able to implement its evaluation f ′

• we could also use

f ′(x) ≃ f (x + h)− f (x)

h
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The secant method

A new method

Hence, one gets a close form method for evaluating f ′ :

x0 given;
forall n from 0 to . . . do

xn+1 = xn − f (xn)hn
f (xn+hn)−f (xn)

end

Remarks
• this method is well-defined if at each iteration f (xn + hn)− f (xn) ̸= 0

• the numerical step hn can be different at each iteration

• at each step, we always have two evaluations: computation of f (xn) and f (xn + hn)
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The secant method

to avoid this double evaluation, one can set

hn = xn−1 − xn ∀n ≥ 0

Indeed, if (xn) converges, then (hn) converges towards 0 and at each iteration we only have
one evaluation: computation of f (xn) (if the algorithm is correctly written!)

forall n from 0 to . . . do

xn+1 = xn − f (xn)(xn−xn−1)
f (xn)−f (xn−1)

end

the resulting algorithm is called the secant method
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The secant method

Analysis of the method

Let us assume that f is a function defined on an interval I and that it has a root r in I

• let x0 and x1 be two points in I close enough to the root r

• we substitute in a neighborhood of x1 the function f by the line passing through the
points (x1, f (x1)) and (x0, f (x0)) of equation

fx1(x) =

(
f (x1)− f (x0)

x1 − x0

)
(x − x1) + f (x1)
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The secant method

Analysis of the method

• the affine function fx1 admits a root x2 if and only if f (x1)− f (x0) ̸= 0, and in this case

x2 = x1 − f (x1)

(
x1 − x0

f (x1)− f (x0)

)
• we can expect that x2 is closer to the root r than both x0 and x1
• we can then iterate with x2 and x1 and so on...

• we expect to improve the approximation of the root r by successive approximations.
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The secant method

The secant method algorithm

x0 x1 given;
forall n from 0 to . . . do

xn+1 = xn − f (xn)
(xn − xn−1)

f (xn)− f (xn−1)
end

Remarks
• to get a well-defined sequence (xn), we must have that f (xn) ̸= f (xn−1) for all n ∈ N.
• at each iteration, we have one evaluation: computation of f (xn)

• the convergence analysis is similar to Newton’s method,
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Convergence of the secant method

Theorem

Let f be a map from I in I and r ∈ I a root of the function f . We assume that f is twice
continuously differentiable in a neighborhood of r and that f ′(r) ̸= 0.
Then, if (x0, x1) are sufficiently close to r the secant method generates a sequence (xn) which
is well-defined and converging towards r .
The error satisfies

|en+1| ≤ C |en||en−1|

In this case, the convergence is at least of order 1+
√
5

2 = 1.618...
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Comparison between the algorithms

Bisection

• the method is converging

• only one evaluation at
each iteration

• convergence speed is
linear and therefore slow

Newton

• fast convergence when it
converges

• not to sensitive to
round-off errors if f ′(r) is
not too small

• can diverge if the initial
guess is not correctly
chosen

• requires the evaluation of
the derivative

• two evaluations at each
iteration

Secant

• relatively fast convergence
when the convergence
occurs

• requires one evaluation of
the function at each
iteration

• can diverge if the initial
guess is not correctly
calibrated
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Example

Resolution of x − 0.2 sin x − 0.5 = 0 with the four algorithms

Bisection
x−1 = 0.5
x0 = 1.0

Secant
x−1 = 0.5
x0 = 1.0

Newton
x0 = 1

Fixed-point
x0 = 1

x = 0.2 sin x + 0.5
1 0, 75 0, 5 0, 5 0, 50
2 0, 625 0, 61212248 0, 61629718 0, 595885
3 0, 5625 0, 61549349 0, 61546820 0, 612248
4 0, 59375 0, 61546816 0, 61546816 0, 614941
5 0, 609375 0, 61538219
6 0, 6171875 0, 61545412
7 0, 6132812 0, 61546587
8 0, 6152343 0, 61546779
9 0, 6162109 0, 61546810
10 0, 6157226 0, 61546815
11 0, 6154785
12 0, 6153564
13 0, 6154174
14 0, 6154479
15 0, 6154532
16 0, 61547088
17 0, 61546707
18 0, 61546897
19 0, 615468025
20 0, 615468502
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Convergence acceleration

Principle

Being given a sequence (xn) that converges to r , accelerating the convergence consists in
replacing the initial sequence by a sequence (yn) that converges faster than (xn) towards r , i.e;
satisfying

lim
n→+∞

yn − r

xn − r
= 0.

Example

if (xn) converges linearly then (yn) will converge faster or to a higher order.
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Relaxation method

Let us consider a fixed-point method

xn+1 = g(xn)

that slowly converges or diverges

The equation that we are looking for x = g(x) can also be written for any α ̸= −1

x + αx = g(x) + αx

or

x =
g(x) + αx

1 + α
= G (x)

We can then think of using a fixed-point

yn+1 = G (yn)
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Relaxation method

From the previous results, this method will converge as soon as y0 is close to the fixed-point r
and when

|G ′(r)| =
∣∣∣∣g ′(r) + α

α+ 1

∣∣∣∣ < 1

The convergence will be better when |G ′(r)| is small

Since we are free to choose the relaxation parameter α, the idea is to take it as close as
possible to −g ′(r) !
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Aitken acceleration method

Hypothesis

Let (xn) be a sequence converging to r and such that

xn+1 − r = k (xn − r) where 0 < k < 1

We have

xn+1 − r = k (xn − r) ,

xn+2 − r = k (xn+1 − r) .

and by difference one gets
xn+2 − xn+1 = k (xn+1 − xn) .
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Aitken acceleration method

The principle

Let (xn) be a sequence converging to r and such that

xn+1 − r = k (xn − r) where 0 < k < 1

By reporting then in the first equation written as

r = xn +
xn+1 − xn
1− k

we have

r = xn −
(xn+1 − xn)

2

xn+2 + xn − 2xn+1
.

three consecutive terms of the sequence are then enough to get r !
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Aitken acceleration method

The principle

But the hypothesis is very strong and unrealistic.

The idea of Aitken is to generalize this remark to sequences that converge linearly that is

xn+1 − r = kn (xn − r) with lim
n→∞

kn = k ∈ [0, 1[ .

For n large, kn is almost constant, and so the number

yn = xn −
(xn+1 − xn)

2

xn+2 + xn − 2xn+1

should be close to r .
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Aitken acceleration method

Theorem

Let (xn) be a sequence that converges linearly to r .Then the sequence (yn) defined by

yn := xn −
(xn+1 − xn)

2

xn+2 + xn − 2xn+1

satisfies

lim
n→∞

yn − r

xn − r
= 0.

The Aitken process allows to accelerate the convergence of a sequence which is linearly
converging.
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Aitken acceleration method

Remark:

For the computations, we will use the equivalent expression

yn = xn+1 +
1

1
xn+2−xn+1

− 1
xn+1−xn

this one having a better behavior regarding the round-off errors due to the use of a computer.
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Steffensen algorithm

The principle

Let (xn) be defined by:
xn+1 = g (xn) ∀n ≥ 0

and let us assume that (xn) converges at least linearly to r .

This convergence can be improved bu using the Aitken method.

The idea is to use yn (which is a priori closer to the limit r than xn) instead of xn in the Aitken
algorithm to expect a double acceleration...
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Steffensen algorithm

One gets the algorithm

x0 given;
forall n from 0 to . . . do

yn := g (xn);
zn := g (yn);

xn+1 := xn −
(yn − xn)

2

zn − 2yn + xn
end

69 / 81



Steffensen algorithm

Remarks
• this algorithm is a new fixed-point algorithm

xn+1 = G (xn) with G (x) = x − (g (x)− x)2

g (g (x))− 2g (x) + x
.

• we show that if g ′ (r) ̸= 0, then G ′(r) = 0. The algorithm associated with G converges
then quadratically.

• hence, compared with the algorithm associated to g
• we accelerate the convergence when it is converging
• we have a converging process, even if |g ′ (r)| ≥ 1.

• it must be noticed that if the algorithm for G converges faster that the one for g , each
iteration needs two function evaluations: we have to pay the price !
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Problem description

Multivariate function

Let us consider the equation
F (X ) = 0

where F : RN 7→ RN or in terms of scalar equations
f1(x1, x2, . . . , xN) = 0
f2(x1, x2, . . . , xN) = 0

...
...

fN(x1, x2, . . . , xN) = 0
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The Newton-Raphson method

• the Newton-Raphson method is a generalization to higher-dimensional problems of the
one-dimensional Newton method

xn+1 = xn − (f ′(xn))
−1f (xn)

• it involves the Jacobian matrix of F :

F ′(Xn) =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xN

...
...

. . .
...

∂fN
∂x1

∂fN
∂x2

. . . ∂fN
∂xN


all the derivatives being evaluated at point Xn.
The Newton-Raphson method formally writes down

Xn+1 = Xn − [F ′(Xn)]
−1F (Xn)
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Taylor Series for vector functions

Theorem

Let X = (x1, x2, . . . , xn)
T ,F = (f1, f2, . . . , fm)

T , and assume that F (X ) has bounded
derivatives up to order at least two. Then for a direction vector P = (p1, p2, . . . , pn)

T , the
Taylor expansion for each function fi in each coordinate xj yields

F (X + P) = F (X ) + F ′(X )P +O
(
∥P∥2

)
,

where F ′(X ) is the Jacobian matrix of first derivatives of F at X . Thus we have

fi (X + P) = fi (X ) +
n∑

i=1

∂fi
∂xj

pj +O
(
∥P∥2

)
, i = 1, . . . ,m

For a small P = R − Xn, we have 0 = F (Xn + P) ≈ F (Xn) + F ′(Xn)(R − Xn).
We then define δn such as F (Xn) + F ′(Xn)δn = 0
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The Newton-Raphson method

In a practical computation, we do not explicitly compute the inverse of the Jacobian matrix
which would be too expensive. We prefer to write the algorithm under the following form

X0 given;
forall n from 0 to . . . do

Solve the linear system F ′(Xn)δn = −F (Xn);
Xn+1 = Xn + δn;

end
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The Newton-Raphson method

Remarks :
• the choice of the initial guess is crucial and the risk that the algorithm diverges truly
exists.

• the convergence is second-order and therefore is really fast (when it converges!)
• the Newton-Raphson method is expensive since at each iteration one must

• evaluate N2 + N functions (the N2 partial derivatives of the Jacobian matrix, plus the N
coordinates functions)

• solve N × N the linear system (with a dense matrix!)
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The Broyden method

Principle

• in the Newton-Raphson method, the computation of the Jacobian matrix is highly
expensive

• we will then only determine an approximate value Bn at each iteration

• we have seen that the secant method could be deduced from the Newton method by
approximating

f ′(xn) by
f (xn)− f (xn−1)

xn − xn−1

• in higher dimension N, we will just force the sequence of matrices (Bn) to verify the same
relation

Bn(Xn − Xn−1) = F (Xn)− F (Xn−1)
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The Broyden method

Remarks:

• this relation does not allow us to uniquely define the matrix Bn (n equations for n2

unknowns)

• it only imposes its value in one direction

• Broyden proposed to update Bn to Bn+1 by simply adding a rank-one matrix

Bn+1 = Bn +
(δFn − BnδXn)(δXn)

T

∥δXn∥2

where we introduced δXn = Xn+1 − Xn and δFn = F (Xn+1)− F (Xn).

• we immediately verify that the sequence of defined matrices (Bn) then satisfy the relation.

78 / 81



The Broyden method

The Broyden algorithm

X0 and B0 given;
forall n from 0 to . . . do

Solve the linear system Bnδn = −F (Xn);
Xn+1 = Xn + δn;
δFn = F (Xn+1)− F (Xn);

Bn+1 = Bn +
(δFn − Bnδn)(δn)

T

∥δn∥2
;

end

79 / 81



The Broyden method

Remarks:
• we can take the initial matrix as B0 = Id ; after a certain time, the matrix becomes a
suitable approximation of the Jacobian matrix.

• it can be proved that in general and as for the secant method, the convergence is
superlinear.

• The sequence of matrices (Bn) does not necessarily converge towards the Jacobian of F .
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Summary

We have seen a few methods to find roots of 1D non-linear equations.

• the fixed-point theory is a fundamental concept to develop algorithms,

• they are methods to accelerate convergence (Aitken-acceleration)

• built-in methods combine the bisection, Newton and secant methods

In two or more dimensions the situtation is more complicated

• Newton method can still be used, but is very costly

• Cheaper methods can be devised by approximating the Jacobian

• Root-finding is strongly linked to optimization: zeros of the Jacobian help to detect
extrema of functions
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